Find sin x/2, cos x/2, and tan x/2, if cos x = -12/13, 180 degrees is less than x which is less than 270 degrees

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find sin x/2, cos x/2, and tan x/2, if cos x = -12/13, 180 degrees is less than x which is less than 270 degrees

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1352334915182:dw| But anyways, mainly I drew this to show what quadrant we are in. sine and cosine are both negative in this quadrant Do you know the half angle identities for sine and cosine?
I know them but I don't know how to use them.
\[\sin(\frac{x}{2})=\pm \sqrt{\frac{1}{2}(1-\cos(x))}\] \[\cos(\frac{x}{2})=\pm \sqrt{\frac{1}{2}(1+\cos(x))}\] \[\tan(\frac{x}{2})=\frac{\sin(\frac{x}{2})}{\cos(\frac{x}{2})}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I know how to get the decimal answers, but I need exact answers.
Since we are looking at the third quadrant and I said sine and cosine are both negative there, then we are actually looking at: \[\sin(\frac{x}{2})=-\sqrt{\frac{1}{2}(1-\cos(x))}\] \[\cos(\frac{x}{2})=-\sqrt{\frac{1}{2}(1+\cos(x))}\] Replace cos(x) with what it equals which is -12/13 then simplify
For sin x/2 I got -sqrt of 25/26, which is wrong apparently, but I got cos x/2=-sqrt of 1/26 and it was right. Also, how do I find tan x/2 from all of this?
\[\sin(\frac{x}{2})=-\sqrt{\frac{1}{2}(1-\frac{-12}{13})} =- \sqrt{\frac{1}{2}(1+\frac{12}{13})}=-\sqrt{\frac{1}{2}(\frac{13}{13}+\frac{12}{13})}\] \[=-\sqrt{\frac{1}{2}(\frac{25}{13})}=-\sqrt{\frac{25}{26}}=-\frac{\sqrt{25}}{\sqrt{26}}=-\frac{5}{\sqrt{26}}\] This answer can be simplified more by choosing to rationalize the denominator
Ok thanks. I figured out the tan x/2 part
np.

Not the answer you are looking for?

Search for more explanations.

Ask your own question