question about critical points...

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

question about critical points...

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Hi, I have been unable to find this in my textbook. So say I have \(f(x,y)\) at the point \((a,b)\) and \[\frac{\partial f}{\partial x}=\frac{\partial f}{\partial y}=0\]
If I say \[\Delta(x,y)=\frac{\partial^2 f}{\partial x^2}\cdot\frac{\partial^2 f}{\partial y^2}-\left(\frac{\partial^2f}{\partial x\partial y}\right)^2\]
then if \[\Delta (a,b) > 0\quad \text{and}\quad \frac{\partial^2f}{\partial x\partial y}>0\] I have a relative maximum. And if\[\Delta (a,b) > 0\quad \text{and}\quad \frac{\partial^2f}{\partial x\partial y}<0\]I have a relative minimum.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

If \(\Delta (a,b) < 0\) I have a saddle point. And If \(\Delta (a,b) = 0\) I can't draw any conclusions. So I have two questions. The first one (most important) is what if \[\frac{\partial^2f}{\partial x\partial y}=0\] Then how do I know if this is a maximum or a minimum? The second question (less important for now), is why does this work!?!?
sorry the mixed partial derivatives are also evaluated at (a,b)

Not the answer you are looking for?

Search for more explanations.

Ask your own question