Here's the question you clicked on:
Goten77
y=xe^(-x/8) y1=x(e^(-x/8))(-1/8) + e^(-x/8)(1) critical points ima type this below along w/ the question
\[y=xe ^{-x/8}\] then derivative is this correct? \[y ^{1}=xe ^{-x/8}(-1/8) + e ^{-x/8}1\]
simplifying your 1st derivative you will have \[\frac{dy}{dx} = e^{-\frac{x}{8}}(-\frac{1}{8} x + 1)\] so you need to solve \[-\frac{1}{8} x + 1 = 0\]
ok thats what i got and then i get like -1/8x = -1 then x=-1/(-1/8) = +8
thats correct.... that is the only value of x that makes the 1st derivative = 0...
oh nvm i c y e^o=1 eh i aint thinking
if you have x = 0 then \[dy/dx = e^{-\frac{0}{8}}(-\frac{1}{8}\times 0 + 1) = 1\] because \[e^{\frac{0}{8}} = 1\] any number to a power of zero is 1 so only 1 critical point...
man i made so many simple mistakes on this last quiz... today i just aint thinking... oh well atleast i got this concept right XD