anonymous
  • anonymous
Use a linear approximation (or differentials) to estimate the given number. e^0.01
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ok u just need a linear approximation of \(e^x\)
anonymous
  • anonymous
So I should still use the f(a) + f'(a) (x-a) ?
anonymous
  • anonymous
yes and u have\[f(x)=e^x\]and \[a=\text{whatever u want but better and simpler to use 0} \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok so let me try this to see what equation i get
anonymous
  • anonymous
iDK if what i did makes sense. I got f(0) + f'(o)(x-0) = 1 + 0(x-0) = 1
anonymous
  • anonymous
emm but f'(0) is 1 ha?
anonymous
  • anonymous
f'(x) = 1/x right so isnt x=0 so that makes it 1/0 = 0.
anonymous
  • anonymous
f'(x)=e^x
anonymous
  • anonymous
i gotta go...good night from eastern hemisphere :) think about it.
anonymous
  • anonymous
ok tahnks!
anonymous
  • anonymous
bye and thank u
anonymous
  • anonymous
Its 3:35 pm here in the USA! but gnite

Looking for something else?

Not the answer you are looking for? Search for more explanations.