anonymous
  • anonymous
How do I do this?
Mathematics
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

anonymous
  • anonymous
How do I do this?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\int\limits_{0}^{9}f(x)dx=37; \int\limits_{0}^{9}g(x)dx=16\]
anonymous
  • anonymous
Find: \[\int\limits_{0}^{9}[2f(x)+3g(x)]dx\]
phi
  • phi
the integral is "linear" in other words, for a constant "a" \[ \int\limits_{0}^{9} a f(x)dx = a\int\limits_{0}^{9} f(x)dx \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
so in this case \[2\int\limits_{0}^{9} x.dx\]??
phi
  • phi
and you can separate integrals (assuming they have the same limits \[ \int\limits_{0}^{9} f(x) + g(x) dx= \int\limits_{0}^{9} f(x)dx + \int\limits_{0}^{9} g(x)dx\]
phi
  • phi
not x , f(x) so separate the problem into \[ 2\int\limits_{0}^{9} f(x)dx + 3\int\limits_{0}^{9} g(x)dx \]
anonymous
  • anonymous
yea right! so \[37x(9,0)+16x(9,0)\]
phi
  • phi
I don't know about the x(9,0) part just replace the integral with the number they say it is equal to \[ 2\cancel{(\int\limits_{0}^{9} f(x)dx)}37 + 3\int\limits_{0}^{9} g(x)dx \] and do the same for the other, it is 16
phi
  • phi
I am trying to show you sub in 37 for the result of the first integral
anonymous
  • anonymous
ohh alright, i got it!
anonymous
  • anonymous
so its 2(37) + 3(16) = 122
anonymous
  • anonymous
thanks @phi :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.