Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

Laplace transforms \[F(s)=\mathcal L\left\{ f(t)\right\}=\int\limits_0^\infty f(t)e^{-st}\text dt\]

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [1]\[\mathcal L\left\{ 1\right\}=\int\limits_0^\infty e^{-st}\text dt=\left.\frac{e^{-st}}{-s}\right|_0^\infty=\frac{0-1}{-s}=\frac 1s\]

    • one year ago
  2. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [2]\[\mathcal L\left\{ t^n\right\}=\int\limits_0^\infty t^ne^{-st}\text dt\] \[\qquad\qquad\text{let } t=\frac us\qquad\qquad\text dt=\frac{\text du}s\]\[\qquad\qquad t=0\rightarrow u=0\qquad t=\infty\rightarrow u=\infty\] \[=\int\limits_0^\infty \left(\frac up\right)^ne^{-s\frac us}\frac{\text du}s\]\[=\frac{1}{s^{n+1}}\int\limits_0^\infty u^ne^{-u} {\text du}\]\[=\frac{\Gamma(n+1)}{s^{n+1}}\][3]\[=\frac{n!}{s^{n+1}},\qquad n\in \mathbb N\]

    • one year ago
  3. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [4]\[\mathcal L\left\{ e^{-bt}\right\}=\int\limits_0^\infty e^{-bt}e^{-st}\text dt=\int\limits_0^\infty e^{-(s+b)t}\text dt=\left. \frac{e^{-(s+b)t}}{-(s+b)}\right|_0^\infty=\frac 1{s+b}\]

    • one year ago
  4. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [5]\[\mathcal L\left\{ \sin(nt)\right\}=\int\limits_0^\infty \sin(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak {I}}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak {I}}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)=\frak I\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak {I}}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak I}\left(\frac{1}{s-in}\right)= {\frak I}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak I}\left(\frac{s+in}{s^2+n^2}\right)= \frac{n}{s^2+n^2}\]

    • one year ago
  5. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [6]\[\mathcal L\left\{\cos (nt)\right\}=\int\limits_0^\infty \cos(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak R}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak R}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)={\frak R}\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak R}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak R}\left(\frac{1}{s-in}\right)= {\frak R}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak R}\left(\frac{s+in}{s^2+n^2}\right)= \frac{s}{s^2+n^2}\]

    • one year ago
  6. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    [7]\[\mathcal L\left\{\sinh (nt)\right\}=\int\limits_0^\infty \sinh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}-e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}-e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}-\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}-\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)-(s-n)}{s^2-n^2}\right)\]\[=\frac{n}{s^2-n^2}\] [8]\[\mathcal L\left\{\cosh (nt)\right\}=\int\limits_0^\infty \cosh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}+e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}+e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}+\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}+\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)+(s-n)}{s^2-n^2}\right)\]\[=\frac{s}{s^2-n^2}\]

    • one year ago
  7. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    **in [2] p=s

    • one year ago
  8. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    all right ... find the Laplace transform of |sin(x)|

    • one year ago
  9. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    * \( |\sin (t) |\)

    • one year ago
  10. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    \[\mathcal L\left\{ \left|\sin(t)\right|\right\}=\int\limits_0^\infty \left|\sin(t)\right|e^{-st}\text dt\]\[\qquad\qquad\qquad=\]

    • one year ago
  11. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    yep ... I'll give you more general problem. Question directly from my Question paper. if f(x+l) = f(x), how that it's Laplace Transform is \[ \huge { \int_0^L e^{-st}f(t) dt \over 1 - e^{sL} }\]

    • one year ago
  12. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    \( f(t+L) = f(t) \)

    • one year ago
  13. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    what is \(L\) ?

    • one year ago
  14. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    of course

    • one year ago
  15. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    periodic functions are represented as f(x+T) = f(x) .. T would be period.

    • one year ago
  16. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    \[\mathcal L\left\{t\sin(nt)\right\}=\int\limits_0^\infty t\sin(nt)e^{-pt}\text dt\] \[=\int_0^\infty t\left(\frac{e^{int}-e^{-int}}{2i}\right)e^{-pt}\text dt\] \[=\frac 1{2i}\int_0^\infty t({e^{int}-e^{-int}})e^{-pt}\text dt\] \[=\frac 1{2i}\left[\int_0^\infty t\cdot e^{-(p-in)t}\text dt-\int_0^\infty t\cdot e^{-(p+in)t}\text dt\right]\] \[=\frac 1{2i}\left[\left(\left.\frac{t\cdot e^{-(p-in)}}{-(p-in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}\text dt\right)\right.\]\[\qquad\qquad\left.-\left(\left.\frac{t\cdot e^{-(p+in)}}{-(p+in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\left(0+\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt\right)-\left(0+\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt-\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right]\] \[=\frac 1{2i}\left[\left.\frac{e^{-(p-in)t}}{-(p-in)^2}-\frac{e^{-(p+in)t}}{-(p+in)^2}\right|_0^\infty\right]\] \[=\frac 1{2i}\left[\frac{1}{(p-in)^2}-\frac{1}{(p+in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p+in)^2-(p+in)^2}{(p-in)^2(p-in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p^2-2ipn-n^2)-(p^2+2ipn-n^2)}{\left((p-in)(p+in)\right)^2}\right]\] \[=\frac 1{2i}\left[\frac{-4ipn}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{2pn}{\left(p^2+n^2\right)^2}\]

    • one year ago
  17. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    \[\mathcal L\left\{t\cos(nt)\right\}=\int\limits_0^\infty t\cos(nt)e^{-pt}\text dt\] \[=\int\limits_0^\infty t\left(\frac{e^{-int}+e^{int}}2\right)e^{-pt}\text dt\] \[=\frac12\left[\int\limits_0^\infty t{e^{-(p+in)t}\text dt+\int\limits_0^\infty te^{-(p-in)t}}\text dt\right]\] \[=\frac12\left[\left(\left.\frac{t\cdot e^{-(p+in)t}}{-(p+in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}{\text dt}\right)\right.\]\[\qquad\qquad \left.+\left(\left.\frac{t\cdot e^{-(p-in)t}}{-(p-in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\left(0+\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}\right)+\left(0+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right]\] \[=\frac12\left[\left.\frac{e^{-(p+in)t}}{(p+in)^2}+\frac{e^{-(p-in)t}}{(p-in)^2}\right|_0^\infty\right]\] \[=\frac12\left[\frac{1}{(p+in)^2}+\frac{1}{(p-in)^2}\right]\] \[=\frac12\left[\frac{(p-in)^2+(p+in)^2}{(p+in)^2(p-in)^2}\right]\] \[=\frac12\left[\frac{(p^2-2inp-n^2)+(p^2+2inp-n^2)}{\left((p+in)(p-in)\right)^2}\right]\] \[=\frac12\left[\frac{2p^2-2n^2)}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{p^2-n^2}{\left(p^2+n^2\right)^2}\]

    • one year ago
  18. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    ta da

    • one year ago
  19. UnkleRhaukus
    Best Response
    You've already chosen the best response.
    Medals 2

    p=s, n= \(\omega\)

    • one year ago
  20. experimentX
    Best Response
    You've already chosen the best response.
    Medals 0

    there you go http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.