UnkleRhaukus
  • UnkleRhaukus
Laplace transforms \[F(s)=\mathcal L\left\{ f(t)\right\}=\int\limits_0^\infty f(t)e^{-st}\text dt\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
[1]\[\mathcal L\left\{ 1\right\}=\int\limits_0^\infty e^{-st}\text dt=\left.\frac{e^{-st}}{-s}\right|_0^\infty=\frac{0-1}{-s}=\frac 1s\]
UnkleRhaukus
  • UnkleRhaukus
[2]\[\mathcal L\left\{ t^n\right\}=\int\limits_0^\infty t^ne^{-st}\text dt\] \[\qquad\qquad\text{let } t=\frac us\qquad\qquad\text dt=\frac{\text du}s\]\[\qquad\qquad t=0\rightarrow u=0\qquad t=\infty\rightarrow u=\infty\] \[=\int\limits_0^\infty \left(\frac up\right)^ne^{-s\frac us}\frac{\text du}s\]\[=\frac{1}{s^{n+1}}\int\limits_0^\infty u^ne^{-u} {\text du}\]\[=\frac{\Gamma(n+1)}{s^{n+1}}\][3]\[=\frac{n!}{s^{n+1}},\qquad n\in \mathbb N\]
UnkleRhaukus
  • UnkleRhaukus
[4]\[\mathcal L\left\{ e^{-bt}\right\}=\int\limits_0^\infty e^{-bt}e^{-st}\text dt=\int\limits_0^\infty e^{-(s+b)t}\text dt=\left. \frac{e^{-(s+b)t}}{-(s+b)}\right|_0^\infty=\frac 1{s+b}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
[5]\[\mathcal L\left\{ \sin(nt)\right\}=\int\limits_0^\infty \sin(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak {I}}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak {I}}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)=\frak I\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak {I}}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak I}\left(\frac{1}{s-in}\right)= {\frak I}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak I}\left(\frac{s+in}{s^2+n^2}\right)= \frac{n}{s^2+n^2}\]
UnkleRhaukus
  • UnkleRhaukus
[6]\[\mathcal L\left\{\cos (nt)\right\}=\int\limits_0^\infty \cos(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak R}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak R}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)={\frak R}\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak R}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak R}\left(\frac{1}{s-in}\right)= {\frak R}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak R}\left(\frac{s+in}{s^2+n^2}\right)= \frac{s}{s^2+n^2}\]
UnkleRhaukus
  • UnkleRhaukus
[7]\[\mathcal L\left\{\sinh (nt)\right\}=\int\limits_0^\infty \sinh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}-e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}-e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}-\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}-\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)-(s-n)}{s^2-n^2}\right)\]\[=\frac{n}{s^2-n^2}\] [8]\[\mathcal L\left\{\cosh (nt)\right\}=\int\limits_0^\infty \cosh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}+e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}+e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}+\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}+\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)+(s-n)}{s^2-n^2}\right)\]\[=\frac{s}{s^2-n^2}\]
UnkleRhaukus
  • UnkleRhaukus
**in [2] p=s
experimentX
  • experimentX
all right ... find the Laplace transform of |sin(x)|
experimentX
  • experimentX
* \( |\sin (t) |\)
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\left\{ \left|\sin(t)\right|\right\}=\int\limits_0^\infty \left|\sin(t)\right|e^{-st}\text dt\]\[\qquad\qquad\qquad=\]
experimentX
  • experimentX
yep ... I'll give you more general problem. Question directly from my Question paper. if f(x+l) = f(x), how that it's Laplace Transform is \[ \huge { \int_0^L e^{-st}f(t) dt \over 1 - e^{sL} }\]
experimentX
  • experimentX
\( f(t+L) = f(t) \)
UnkleRhaukus
  • UnkleRhaukus
what is \(L\) ?
UnkleRhaukus
  • UnkleRhaukus
of course
experimentX
  • experimentX
periodic functions are represented as f(x+T) = f(x) .. T would be period.
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\left\{t\sin(nt)\right\}=\int\limits_0^\infty t\sin(nt)e^{-pt}\text dt\] \[=\int_0^\infty t\left(\frac{e^{int}-e^{-int}}{2i}\right)e^{-pt}\text dt\] \[=\frac 1{2i}\int_0^\infty t({e^{int}-e^{-int}})e^{-pt}\text dt\] \[=\frac 1{2i}\left[\int_0^\infty t\cdot e^{-(p-in)t}\text dt-\int_0^\infty t\cdot e^{-(p+in)t}\text dt\right]\] \[=\frac 1{2i}\left[\left(\left.\frac{t\cdot e^{-(p-in)}}{-(p-in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}\text dt\right)\right.\]\[\qquad\qquad\left.-\left(\left.\frac{t\cdot e^{-(p+in)}}{-(p+in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\left(0+\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt\right)-\left(0+\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt-\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right]\] \[=\frac 1{2i}\left[\left.\frac{e^{-(p-in)t}}{-(p-in)^2}-\frac{e^{-(p+in)t}}{-(p+in)^2}\right|_0^\infty\right]\] \[=\frac 1{2i}\left[\frac{1}{(p-in)^2}-\frac{1}{(p+in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p+in)^2-(p+in)^2}{(p-in)^2(p-in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p^2-2ipn-n^2)-(p^2+2ipn-n^2)}{\left((p-in)(p+in)\right)^2}\right]\] \[=\frac 1{2i}\left[\frac{-4ipn}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{2pn}{\left(p^2+n^2\right)^2}\]
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\left\{t\cos(nt)\right\}=\int\limits_0^\infty t\cos(nt)e^{-pt}\text dt\] \[=\int\limits_0^\infty t\left(\frac{e^{-int}+e^{int}}2\right)e^{-pt}\text dt\] \[=\frac12\left[\int\limits_0^\infty t{e^{-(p+in)t}\text dt+\int\limits_0^\infty te^{-(p-in)t}}\text dt\right]\] \[=\frac12\left[\left(\left.\frac{t\cdot e^{-(p+in)t}}{-(p+in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}{\text dt}\right)\right.\]\[\qquad\qquad \left.+\left(\left.\frac{t\cdot e^{-(p-in)t}}{-(p-in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\left(0+\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}\right)+\left(0+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right]\] \[=\frac12\left[\left.\frac{e^{-(p+in)t}}{(p+in)^2}+\frac{e^{-(p-in)t}}{(p-in)^2}\right|_0^\infty\right]\] \[=\frac12\left[\frac{1}{(p+in)^2}+\frac{1}{(p-in)^2}\right]\] \[=\frac12\left[\frac{(p-in)^2+(p+in)^2}{(p+in)^2(p-in)^2}\right]\] \[=\frac12\left[\frac{(p^2-2inp-n^2)+(p^2+2inp-n^2)}{\left((p+in)(p-in)\right)^2}\right]\] \[=\frac12\left[\frac{2p^2-2n^2)}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{p^2-n^2}{\left(p^2+n^2\right)^2}\]
UnkleRhaukus
  • UnkleRhaukus
ta da
UnkleRhaukus
  • UnkleRhaukus
p=s, n= \(\omega\)
experimentX
  • experimentX
there you go http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx

Looking for something else?

Not the answer you are looking for? Search for more explanations.