Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Laplace transforms \[F(s)=\mathcal L\left\{ f(t)\right\}=\int\limits_0^\infty f(t)e^{-st}\text dt\]

Differential Equations
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
[1]\[\mathcal L\left\{ 1\right\}=\int\limits_0^\infty e^{-st}\text dt=\left.\frac{e^{-st}}{-s}\right|_0^\infty=\frac{0-1}{-s}=\frac 1s\]
[2]\[\mathcal L\left\{ t^n\right\}=\int\limits_0^\infty t^ne^{-st}\text dt\] \[\qquad\qquad\text{let } t=\frac us\qquad\qquad\text dt=\frac{\text du}s\]\[\qquad\qquad t=0\rightarrow u=0\qquad t=\infty\rightarrow u=\infty\] \[=\int\limits_0^\infty \left(\frac up\right)^ne^{-s\frac us}\frac{\text du}s\]\[=\frac{1}{s^{n+1}}\int\limits_0^\infty u^ne^{-u} {\text du}\]\[=\frac{\Gamma(n+1)}{s^{n+1}}\][3]\[=\frac{n!}{s^{n+1}},\qquad n\in \mathbb N\]
[4]\[\mathcal L\left\{ e^{-bt}\right\}=\int\limits_0^\infty e^{-bt}e^{-st}\text dt=\int\limits_0^\infty e^{-(s+b)t}\text dt=\left. \frac{e^{-(s+b)t}}{-(s+b)}\right|_0^\infty=\frac 1{s+b}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

[5]\[\mathcal L\left\{ \sin(nt)\right\}=\int\limits_0^\infty \sin(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak {I}}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak {I}}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)=\frak I\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak {I}}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak I}\left(\frac{1}{s-in}\right)= {\frak I}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak I}\left(\frac{s+in}{s^2+n^2}\right)= \frac{n}{s^2+n^2}\]
[6]\[\mathcal L\left\{\cos (nt)\right\}=\int\limits_0^\infty \cos(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty {\frak R}\left(e^{int}\right)e^{-st}\text dt\]\[={\frak R}\left(\int\limits_0^\infty e^{int}e^{-st}\text dt\right)={\frak R}\left(\int\limits_0^\infty e^{-(s-in)t}\text dt\right)= {\frak R}\left(\left.\frac{e^{-(s-in)t}}{-(s-in)}\right|_0^\infty\right)\]\[= {\frak R}\left(\frac{1}{s-in}\right)= {\frak R}\left(\frac{1}{s-in}\times\frac{s+in}{s+in}\right)= {\frak R}\left(\frac{s+in}{s^2+n^2}\right)= \frac{s}{s^2+n^2}\]
[7]\[\mathcal L\left\{\sinh (nt)\right\}=\int\limits_0^\infty \sinh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}-e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}-e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}-\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}-\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)-(s-n)}{s^2-n^2}\right)\]\[=\frac{n}{s^2-n^2}\] [8]\[\mathcal L\left\{\cosh (nt)\right\}=\int\limits_0^\infty \cosh(nt)e^{-st}\text dt\]\[=\int\limits_0^\infty \frac{e^{nt}+e^{-nt}}2e^{-st}\text dt\]\[=\frac 12\int\limits_0^\infty{e^{-(s-n)t}+e^{-(s+n)t}}\text dt\]\[=\frac 12\left(\left.\frac {e^{-(s-n)t}}{-(s-n)}+\frac{e^{-(s+n)t}}{-(s+n)}\right)\right|_0^\infty\]\[=\frac12\left(\frac {1}{s-n}+\frac{1}{s+n}\right)\]\[=\frac12\left(\frac {(s+n)+(s-n)}{s^2-n^2}\right)\]\[=\frac{s}{s^2-n^2}\]
**in [2] p=s
all right ... find the Laplace transform of |sin(x)|
* \( |\sin (t) |\)
\[\mathcal L\left\{ \left|\sin(t)\right|\right\}=\int\limits_0^\infty \left|\sin(t)\right|e^{-st}\text dt\]\[\qquad\qquad\qquad=\]
yep ... I'll give you more general problem. Question directly from my Question paper. if f(x+l) = f(x), how that it's Laplace Transform is \[ \huge { \int_0^L e^{-st}f(t) dt \over 1 - e^{sL} }\]
\( f(t+L) = f(t) \)
what is \(L\) ?
of course
periodic functions are represented as f(x+T) = f(x) .. T would be period.
\[\mathcal L\left\{t\sin(nt)\right\}=\int\limits_0^\infty t\sin(nt)e^{-pt}\text dt\] \[=\int_0^\infty t\left(\frac{e^{int}-e^{-int}}{2i}\right)e^{-pt}\text dt\] \[=\frac 1{2i}\int_0^\infty t({e^{int}-e^{-int}})e^{-pt}\text dt\] \[=\frac 1{2i}\left[\int_0^\infty t\cdot e^{-(p-in)t}\text dt-\int_0^\infty t\cdot e^{-(p+in)t}\text dt\right]\] \[=\frac 1{2i}\left[\left(\left.\frac{t\cdot e^{-(p-in)}}{-(p-in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}\text dt\right)\right.\]\[\qquad\qquad\left.-\left(\left.\frac{t\cdot e^{-(p+in)}}{-(p+in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\left(0+\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt\right)-\left(0+\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt-\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right]\] \[=\frac 1{2i}\left[\left.\frac{e^{-(p-in)t}}{-(p-in)^2}-\frac{e^{-(p+in)t}}{-(p+in)^2}\right|_0^\infty\right]\] \[=\frac 1{2i}\left[\frac{1}{(p-in)^2}-\frac{1}{(p+in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p+in)^2-(p+in)^2}{(p-in)^2(p-in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p^2-2ipn-n^2)-(p^2+2ipn-n^2)}{\left((p-in)(p+in)\right)^2}\right]\] \[=\frac 1{2i}\left[\frac{-4ipn}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{2pn}{\left(p^2+n^2\right)^2}\]
\[\mathcal L\left\{t\cos(nt)\right\}=\int\limits_0^\infty t\cos(nt)e^{-pt}\text dt\] \[=\int\limits_0^\infty t\left(\frac{e^{-int}+e^{int}}2\right)e^{-pt}\text dt\] \[=\frac12\left[\int\limits_0^\infty t{e^{-(p+in)t}\text dt+\int\limits_0^\infty te^{-(p-in)t}}\text dt\right]\] \[=\frac12\left[\left(\left.\frac{t\cdot e^{-(p+in)t}}{-(p+in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}{\text dt}\right)\right.\]\[\qquad\qquad \left.+\left(\left.\frac{t\cdot e^{-(p-in)t}}{-(p-in)}\right|_0^\infty-\int\limits_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\left(0+\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}\right)+\left(0+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right)\right]\] \[=\frac12\left[\int\limits_0^\infty\frac{e^{-(p+in)t}}{(p+in)}{\text dt}+\int\limits_0^\infty\frac{e^{-(p-in)t}}{(p-in)}{\text dt}\right]\] \[=\frac12\left[\left.\frac{e^{-(p+in)t}}{(p+in)^2}+\frac{e^{-(p-in)t}}{(p-in)^2}\right|_0^\infty\right]\] \[=\frac12\left[\frac{1}{(p+in)^2}+\frac{1}{(p-in)^2}\right]\] \[=\frac12\left[\frac{(p-in)^2+(p+in)^2}{(p+in)^2(p-in)^2}\right]\] \[=\frac12\left[\frac{(p^2-2inp-n^2)+(p^2+2inp-n^2)}{\left((p+in)(p-in)\right)^2}\right]\] \[=\frac12\left[\frac{2p^2-2n^2)}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{p^2-n^2}{\left(p^2+n^2\right)^2}\]
ta da
p=s, n= \(\omega\)
there you go http://tutorial.math.lamar.edu/Classes/DE/Laplace_Table.aspx

Not the answer you are looking for?

Search for more explanations.

Ask your own question