Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

josephT Group Title

This question refers to lecture 6 of the Single Variable Calculus course, where Dr. Jerison is showing how to calculate d/dx a^x. (18-01sc-single-variable-calculus-fall-2010 Session 17: The Exponential Function, its Derivative, and its Inverse) Isn't there an error at 18:12 of the lecture? The equation d/dx f(kx) = k f'(kx) mixes Newton's and Leibnitz's notation, but, using Newton's, the equation is f'(kx) = k f'(kx). It seems this could only be correct for k=1 (or f'(kx) = 0). But k is "any number", not just 1; and f'(kx) = 2^(kx) ln(kx), so f'(kx) could only be 0 if kx = 1. Well, that rules out k being "any number - it has to be the reciprocal of x - and it couldn't be 0. Any help explaining this apparent difficulty with the proof would be appreciated. Thanks.

  • one year ago
  • one year ago

  • This Question is Closed
  1. nmonson Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    d/dx f(kx) is not equivalent to f'(kx), but rather (f(kx))'. In this case f(kx) is a composition of functions where f( ) is the outer function and kx is the inner function. Apply the chain rule. Multiply the derivative of the outer function - f'(kx) - by the derivative of the inner function - k. So d/dx f(kx) = kf'(kx). Or (f(kx))' = kf'(kx).

    • one year ago
  2. josephT Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    I think I understand what you mean: When Dr Jerison writes f'(kx), that means the deriv with respect to kx of f(kx). [Would that be d/d(kx) f(kx) in Leibnitz notation?] And if u = kx, then, by the chain rule, d/dx f(u) = d/du f(u) * du/dx d/dx f(u) = d/du f(u) * d/dx kx d/dx f(u) = d/du f(u) * k which, replacing the rest of the u's with kx's gives: d/dx f(kx) = d/d(kx) f(kx) * k or as Dr Jerison correctly wrote: d/dx f(kx) = k * f'(kx) Please tell me if I got anything wrong here. And thanks so much for your taking the time to answer.

    • one year ago
  3. nmonson Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Looks good to me. Don't know enough about notation to say if it's conventional to write d/d(kx). Conceptually though, you seem to have it as far as I can tell.

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.