anonymous
  • anonymous
This question refers to lecture 6 of the Single Variable Calculus course, where Dr. Jerison is showing how to calculate d/dx a^x. (18-01sc-single-variable-calculus-fall-2010 Session 17: The Exponential Function, its Derivative, and its Inverse) Isn't there an error at 18:12 of the lecture? The equation d/dx f(kx) = k f'(kx) mixes Newton's and Leibnitz's notation, but, using Newton's, the equation is f'(kx) = k f'(kx). It seems this could only be correct for k=1 (or f'(kx) = 0). But k is "any number", not just 1; and f'(kx) = 2^(kx) ln(kx), so f'(kx) could only be 0 if kx = 1. Well, that rules out k being "any number - it has to be the reciprocal of x - and it couldn't be 0. Any help explaining this apparent difficulty with the proof would be appreciated. Thanks.
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
d/dx f(kx) is not equivalent to f'(kx), but rather (f(kx))'. In this case f(kx) is a composition of functions where f( ) is the outer function and kx is the inner function. Apply the chain rule. Multiply the derivative of the outer function - f'(kx) - by the derivative of the inner function - k. So d/dx f(kx) = kf'(kx). Or (f(kx))' = kf'(kx).
anonymous
  • anonymous
I think I understand what you mean: When Dr Jerison writes f'(kx), that means the deriv with respect to kx of f(kx). [Would that be d/d(kx) f(kx) in Leibnitz notation?] And if u = kx, then, by the chain rule, d/dx f(u) = d/du f(u) * du/dx d/dx f(u) = d/du f(u) * d/dx kx d/dx f(u) = d/du f(u) * k which, replacing the rest of the u's with kx's gives: d/dx f(kx) = d/d(kx) f(kx) * k or as Dr Jerison correctly wrote: d/dx f(kx) = k * f'(kx) Please tell me if I got anything wrong here. And thanks so much for your taking the time to answer.
anonymous
  • anonymous
Looks good to me. Don't know enough about notation to say if it's conventional to write d/d(kx). Conceptually though, you seem to have it as far as I can tell.

Looking for something else?

Not the answer you are looking for? Search for more explanations.