Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

does anyone understand proofs?

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

What do you need help on?
i just don't get how they work at all,,,
prove theorem 5-1: if two parallel planes are cut by a third plane, thenn the lines of intersection are parallel

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

given: planes CDE and ABF ae parallel. Plane ABC is a transversal intersecting both planes
I don't know what postulates and axioms you're working from, but here: We shall say that \(l\) is the line of intersection between \(ABC\) and \(CDE\). Proof: Both lines \(l\) and \(AB\) are on the plane \(ABC\). But, since \(l\) is also on plane \(CDE\), \(AB\) is on \(ABF\), and \(CDE \;\|\; ABF\), these will never meet. Thus, \(AB \;\|\;l\). Q.E.D.
is there an easy way to make these make sense??
Draw it out and then try to logically reason why it could be the case.
Math is like music. We have to learn the basics of each one. The more you practice it, the easier it becomes.
Also, replacing all of the symbols with actual words or phrases, it helps out, quite a bit, if it all looks daunting at first.
they just don't make sense to me :'(
you are in good company here but I have learn that talking about it helps. Just like in music, math also, has its patterns.
music makes sense!
They both do, you just have to learn each one (Trust me, I also play a few instruments, myself).
ok ty

Not the answer you are looking for?

Search for more explanations.

Ask your own question