Here's the question you clicked on:
MusicTeacher
does anyone understand proofs?
What do you need help on?
i just don't get how they work at all,,,
prove theorem 5-1: if two parallel planes are cut by a third plane, thenn the lines of intersection are parallel
given: planes CDE and ABF ae parallel. Plane ABC is a transversal intersecting both planes
I don't know what postulates and axioms you're working from, but here: We shall say that \(l\) is the line of intersection between \(ABC\) and \(CDE\). Proof: Both lines \(l\) and \(AB\) are on the plane \(ABC\). But, since \(l\) is also on plane \(CDE\), \(AB\) is on \(ABF\), and \(CDE \;\|\; ABF\), these will never meet. Thus, \(AB \;\|\;l\). Q.E.D.
is there an easy way to make these make sense??
Draw it out and then try to logically reason why it could be the case.
Math is like music. We have to learn the basics of each one. The more you practice it, the easier it becomes.
Also, replacing all of the symbols with actual words or phrases, it helps out, quite a bit, if it all looks daunting at first.
they just don't make sense to me :'(
you are in good company here but I have learn that talking about it helps. Just like in music, math also, has its patterns.
music makes sense!
They both do, you just have to learn each one (Trust me, I also play a few instruments, myself).