UnkleRhaukus
  • UnkleRhaukus
Is there a simpler method to show from the definition of the Laplace transform. \[\mathcal L\left\{t\sin(nt)\right\}=\frac{2pn}{\left(p^2+n^2\right)^2}\]
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I haven't come across a nicer one, myself, but it'd be nice to see.
anonymous
  • anonymous
(If what I'm seeing is right, of course, considering it's cut off)
anonymous
  • anonymous
http://mathurl.com/aq279pu.png

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
so u can't use properties of LT ?
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\left\{t\sin(nt)\right\}=\int\limits_0^\infty t\sin(nt)e^{-pt}\text dt\] \[=\int_0^\infty t\frac{e^{int}-e^{-int}}{2i}e^{-pt}\text dt\] \[=\frac 1{2i}\int_0^\infty t({e^{int}-e^{-int}})e^{-pt}\text dt\] \[=\frac 1{2i}\left(\int_0^\infty t\cdot e^{-(p-in)t}\text dt-\int_0^\infty t\cdot e^{-(p+in)t}\text dt\right)\] \[=\frac 1{2i}\left[\left(\left.\frac{t\cdot e^{-(p-in)}}{-(p-in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p-in)t}}{-(p-in)}\text dt\right)\right.\]\[\qquad\left.-\left(\left.\frac{t\cdot e^{-(p+in)}}{-(p+in)}\right|_0^\infty-\int_0^\infty\frac{e^{-(p+in)t}}{-(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\left(0+\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt\right)-\left(0+\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right)\right]\] \[=\frac 1{2i}\left[\int_0^\infty\frac{e^{-(p-in)t}}{(p-in)}\text dt-\int_0^\infty\frac{e^{-(p+in)t}}{(p+in)}\text dt\right]\] \[=\frac 1{2i}\left[\left.\frac{e^{-(p-in)t}}{-(p-in)^2}-\frac{e^{-(p+in)t}}{-(p+in)^2}\right|_0^\infty\right]\] \[=\frac 1{2i}\left[\frac{1}{(p-in)^2}-\frac{1}{(p+in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p+in)^2-(p+in)^2}{(p-in)^2(p-in)^2}\right]\] \[=\frac 1{2i}\left[\frac{(p^2-2ipn-n^2)-(p^2+2ipn-n^2)}{\left((p-in)(p+in)\right)^2}\right]\] \[=\frac 1{2i}\left[\frac{-4ipn}{\left(p^2+n^2\right)^2}\right]\] \[=\frac{2pn}{\left(p^2+n^2\right)^2}\]
UnkleRhaukus
  • UnkleRhaukus
the question was "From the definition, evaluate the following Laplace transforms."
anonymous
  • anonymous
0 L(sinnt)=n/p2+n2 L(tsinnt)=-d/dp(n/p2+n2)=2np/(p2_n2)2
anonymous
  • anonymous
From definition...?
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal {L}\{ t f(t)\}=-\frac{\text d}{\text dp}F(p)\] @mahmit2012 does that follow from the definition?
anonymous
  • anonymous
I guess you could write it as a Lemma... don't know how that will fly, with your prof. though.
anonymous
  • anonymous
Yes, that is correct.
anonymous
  • anonymous
I'm still thinking it requires some work, it doesn't just follow from definition.
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\left\{t sin(nt) \right\}\] \[\qquad\qquad\text{let } f(t)=sin(nt)\]\[\qquad\qquad F(t)= \frac{n}{p^2+n^2}\]\[\qquad\qquad \mathcal {L}\{ t f(t)\}=-\frac{\text d}{\text dp}F(p)\]\[\mathcal L\left\{tf(p)\right\}=-\frac{\text d}{\text dp}\left(\frac{n}{p^2+n^2}\right)\]\[=-\frac{\text d}{\text dp}\left({n}({p^2+n^2})^{-1}\right)\]\[=-2pn(p^2+n^2)^{-2}\]\[=\frac{2pn}{(p^2+n^2)^2}\]
UnkleRhaukus
  • UnkleRhaukus
that is much quicker
hartnn
  • hartnn
but u didn't use definition.....
anonymous
  • anonymous
I agree, but I thought you said it had to be from definition...?
hartnn
  • hartnn
u used a property that follows from definition
UnkleRhaukus
  • UnkleRhaukus
i did prove \[f(t)=sin(nt)\] \[F(p)= \frac{n}{p^2+n^2}\] in a earlier question
hartnn
  • hartnn
with the given question, i would go with your earlier response, though its longer
anonymous
  • anonymous
What I was trying to say, as with @hartnn is, just go ahead and prove this: \[\mathcal {L}\{ t f(t)\}=-\frac{d}{dp}F(p)\] as a lemma, and you know that you're working from definition.
UnkleRhaukus
  • UnkleRhaukus
i havent proved \[\mathcal {L}\{ t f(t)\}=-\frac{\text d}{\text dp}F(p)\] yet
anonymous
  • anonymous
Yes, and you should as it's not a corollary of the definition, it's actually a lemma. Once you've got that, just reference it, I haven't had professors nag me about doing such like this, yet, but you never know.

Looking for something else?

Not the answer you are looking for? Search for more explanations.