anonymous
  • anonymous
can someone explain the left hand derivative and right hand derivative rules in order to find whether the function is a differentiable function or not
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Wouldn't it be something similar to the case for limit?
anonymous
  • anonymous
left hand limit and right hand ljmits arent like the derivatives
anonymous
  • anonymous
\[f'(x)= \lim_{h \rightarrow 0}\frac{f(x+h)-f(x)}{h}\] ^Limit A function y=f(x) is differentiable on an open interval if it has a derivative at each point of the interval. It is differentiable on a closed interval [a, b] if it is differentiable on the interior (a,b) and if the limits\[f'(x)= \lim_{h \rightarrow 0^+}\frac{f(a+h)-f(a)}{h}\](Right-hand derivative of at a) \[f'(x)= \lim_{h \rightarrow 0^-}\frac{f(b+h)-f(b)}{h}\](Left-hand derivative of at b) exist at the end point

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Right-hand and left-hand derivatives may be defined at any point of a function 's domain. Because of ''A function f(x) has a limit as x->c if and only if it has left-hand and right-hand limits there and these one-sided limits are equal'', a function has a derivative if and only if it has left-hand and right-hand derivatives there, and these one-sided derivatives are equal.

Looking for something else?

Not the answer you are looking for? Search for more explanations.