anonymous
  • anonymous
4(x+y)=x-16
Pre-Algebra
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Kira_Yamato
  • Kira_Yamato
4(x+y) = x-16 4x+4y = x-16 3x+4y = -16
anonymous
  • anonymous
the rest of the equation I forgot to place in: -3(x-y)=y+10
richyw
  • richyw
So you have this system of equations\[4(x+y)=x-16\]\[-3(x-y)=y+10\]First solve the first equation for one of the variables\[4x+4y=x-16\]\[4y=-3x-16\]\[y=-\frac{3}{4}x-4\]Now plug that value into the second equation and solve for the second variable\[-3x+3y=y+10\]\[-3x+2y=10\]\[-3x+2\left(-\frac{3}{4}x-4\right)=10\]\[-3x-\frac{3}{2}x-8=10\]\[\frac{-6-3}{2}x=18\]\[-\frac{9}{2}x=18\]\[x=-4\]Now plug that value of x into either equation to solve for y.\[4(x+y)=x-16\]\[4(-4+y)=-4-16\]\[-16+4y=-20\]\[4y=4\]\[y=1\]So the solution is x=-4, y=1

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
oops, should be -1/
richyw
  • richyw
the second last line I dropped the negative it should say \[4y=-4\]\[y=-1\]So the solution is x=-4, y=-1
anonymous
  • anonymous
just to let you know, you dont only have to do the substitution process, you can also do elimination. 4(x+y)=x−16 −3(x−y)=y+10 distribute to get 4x+4y=x−16 -3x+3y=y+10 the subtract the common terms from each other to get final answer

Looking for something else?

Not the answer you are looking for? Search for more explanations.