H10P3: An L Network if f=630.0kHz Cmatch=????? Lmatch=?????

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

H10P3: An L Network if f=630.0kHz Cmatch=????? Lmatch=?????

MIT 6.002 Circuits and Electronics, Spring 2007
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Cmatch= 1101.75 pF Lmatch= 55.05 uH
thanks
:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Duty Cycle 58 and check tran.
with diode = 100 and Vin=3v
?
yes
is correct
last question plzz H9P1: Response to a Delayed Impulse L=20.0H and C=20.26mF. A=2/π=0.64 Coulombs at time t=9.0s. B. At the initial time what is the total energy, in Joules, stored in the circuit? C. At the time just before the impulse happens t=9.0− what is the total energy, in Joules, stored in the circuit? E. At the time just before the impulse happens what is the voltage vC(9.0−), in Volts, across the capacitor? incorrect
last question plzz H9P1: Response to a Delayed Impulse L=20.0H and C=20.26mF. A=2/π=0.64 Coulombs at time t=9.0s. B.==? C.==? E.==?
H9P1: Response to a Delayed Impulse L=20.0H and C=20.26mF. A=2/π=0.64 Coulombs at time t=9.0s. B.==? C.==? E.==?
?
incorrect
32.5 incorrect 32.5 incorrect -102.05 incorrect
No
red marks
ok wait
ok
sorry to say all 3 are incorrect
again
no
incorrect
Note: In this problem we have chosen numbers for the part parameters to make it easier to compute an answer :-). By the way, it is also hard to arrange zero resistance, except with superconducting materials at very low temperatures. In the circuit shown below L=20.0H and C=20.26mF. The current source puts out an impulse of area A=2/π=0.64 Coulombs at time t=9.0s. At t=0 the state is: vC(0)=0.0 and iL(0)=1.0. The equation governing the evolution of the inductor current in this circuit is d2iL(t)dt2+1LCiL(t)=ALCδ(t−9.0) What is the natural frequency, in Hertz, of this circuit? correct At the initial time what is the total energy, in Joules, stored in the circuit? incorrect At the time just before the impulse happens t=9.0− what is the total energy, in Joules, stored in the circuit? incorrect At the time just before the impulse happens what is the current iL(9.0−), in Amperes, through the inductor? correct At the time just before the impulse happens what is the voltage vC(9.0−), in Volts, across the capacitor? incorrect At the time just after the impulse happens what is the current iL(9.0+), in Amperes, through the inductor? correct At the time just after the impulse happens what is the voltage vC(9.0+), in Volts, across the capacitor? correct At the time just after the impulse happens what is the total energy, in Joules, stored in the circuit? correct
15 15 -47.1
no
incorrect
capcitor and inductor are in parallel
7.5 7.5 -23.56 is also wrong
10 10
40 40 -40*pi
h9p1 --- e) -15.7079632679 voltage across capacitor

Not the answer you are looking for?

Search for more explanations.

Ask your own question