anonymous
  • anonymous
lim -> 0 sin(2x) /(x*cos(x) ) help
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
sin (2x) = 2sin(x)cos(x) so sin(2x) /(x*cos(x) =2sin(x)cos(x)/x*cos(x)=2sinx/x which as x->0 goes to 1
anonymous
  • anonymous
no, answer is 2
anonymous
  • anonymous
ups sry, forgot about 2 multuplying: lim 2sinx/x=2*1=2 x->0

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
don't undestand you
anonymous
  • anonymous
sin (2x) can be written like: sin (2x) = 2sin(x)cos(x) substituting this expretion in the original one: sin(2x) /(x*cos(x) =2sin(x)cos(x)/x*cos(x)=2sinx/x taking limits, and noticing that lim as x->0 of sinx/x=1: lim 2sinx/x=2*1=2 x->0
anonymous
  • anonymous
|dw:1352667129469:dw|
anonymous
  • anonymous
no
anonymous
  • anonymous
why not? l'Hôpital rule
anonymous
  • anonymous
yes, using l'hospital's rule works
anonymous
  • anonymous
Don't break your head ! You know that sin(x)=x as x tends to zero. So sin(2x) = 2x. In the denominator, keep x as it is and cos(x)=1. Hence the answer
anonymous
  • anonymous
thanks, but the image is ok?
anonymous
  • anonymous
|dw:1352669528245:dw|
lopus
  • lopus
claro que es posible es solamente derivar arriba y abajo como lo muestras en la imagen y ya

Looking for something else?

Not the answer you are looking for? Search for more explanations.