anonymous
  • anonymous
combine the fractions and simplify to a multiple of a power of a basic trigonometric function sinx/cot^2x-sinx/cos^2x?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
can i change the sinx/cos^2x into tan^2x?
zepdrix
  • zepdrix
Hmm no. You can take ONE of the cosines, and change it to tanx*(1/cosx) But I dont know if that's the right way to go c: hmm
zepdrix
  • zepdrix
\[\large \frac{ \sin x }{ \cot^2 x }-\frac{ \sin x }{ \cos^2 x }=\frac{ \sin x }{ (\frac{ \cos^2 x }{ \sin^2 x }) }-\frac{ \sin x }{ \cos^2 x }\] \[\large \frac{ \sin x }{ 1 }*\frac{ \sin^2 x }{ \cos^2 x }-\frac{ \sin x }{ \cos^2 x }\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

zepdrix
  • zepdrix
There are multiple ways to simplify it, since there are so many trig identities, so you might find a different way... but this is what I was thinking :3
zepdrix
  • zepdrix
\[\large \frac{ \sin^3 x - \sin x }{ \cos^2 x }\]
zepdrix
  • zepdrix
Confused about any of that so far? :D
anonymous
  • anonymous
how did you get sinx/1∗sin^2x/cos^2x
zepdrix
  • zepdrix
\[\large \frac{ \left(\frac{ a }{ b }\right) }{ \left(\frac{ c }{ d }\right) }=\frac{ a }{ b }*\frac{ d }{ c }\]
zepdrix
  • zepdrix
Remember how you can do that? when dividing fractions :D flip the bottom one and rewrite it as multiplication.
anonymous
  • anonymous
but the top wasn't a fraction yet it was sinx/ (cos^2x/sin^2x)
anonymous
  • anonymous
oh wait you put it over 1 to make it into a fraction huh?
zepdrix
  • zepdrix
\[\huge \frac{ \left(\sin x \right) }{ \left(\frac{ \cos^2 x }{ \sin^2 x } \right) }=\frac{ \left(\frac{ \sin x }{ 1 } \right) }{ \left(\frac{ \cos^2 x }{ \sin^2 x } \right) }\]
zepdrix
  • zepdrix
Yah hehe :3
zepdrix
  • zepdrix
I gotta go, so lemme post the rest of the steps, and you can at least look at them while I'm gone. I won't be here to answer questions though :c
anonymous
  • anonymous
okay
zepdrix
  • zepdrix
\[\large \frac{ \sin^3 x - \sin x }{ \cos^2 x }=\frac{ \sin x(\sin^2 x - 1) }{ 1-\sin^2 x }\]
zepdrix
  • zepdrix
Factored a sinx from each term in the top. Rewrote cos^2 as 1-sin^2 using identity :D
zepdrix
  • zepdrix
Now if we factor a -1 ouch of each term in the top brackets, we'll have a nice easy cancellation.
zepdrix
  • zepdrix
\[\large \frac{ -\sin x(1-\sin^2 x) }{ 1-\sin^2 x }=-\sin x\]
zepdrix
  • zepdrix
Hopefully I didn't make a mistake in there :D heh
anonymous
  • anonymous
alright well thanks

Looking for something else?

Not the answer you are looking for? Search for more explanations.