KonradZuse
  • KonradZuse
Find a basis for the null space of A.
Linear Algebra
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions.

KonradZuse
  • KonradZuse
Find a basis for the null space of A.
Linear Algebra
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

KonradZuse
  • KonradZuse
My book says that the null space is the solution space of Ax = b when b = 0. The example in the book shows this...
KonradZuse
  • KonradZuse
KonradZuse
  • KonradZuse
Do I just solve it and that's all...?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

KonradZuse
  • KonradZuse
I'm also a bit confused how they got the column matrix's filled out... Maybe that's my issue...
TuringTest
  • TuringTest
pretty much, yeah just solve it and rewrite each variable as a new vector, i.e. one for r, one for s, and one for t
KonradZuse
  • KonradZuse
hmm okay maybe this is easier than I'm thinking let me try it. My example is A = (Matrix(3, 4, {(1, 1) = 1, (1, 2) = 4, (1, 3) = 5, (1, 4) = 2, (2, 1) = 2, (2, 2) = 1, (2, 3) = 3, (2, 4) = 0, (3, 1) = -1, (3, 2) = 3, (3, 3) = 2, (3, 4) = 2})); print(`output redirected...`); # input placeholder
KonradZuse
  • KonradZuse
woah... LOL
KonradZuse
  • KonradZuse
1 4 5 2 2 1 3 0 -1 3 2 2
KonradZuse
  • KonradZuse
now do I have to augment it with the 0 column-vector?
TuringTest
  • TuringTest
go ahead and row reduce it as much as you can brb, gotta go to get dinner
KonradZuse
  • KonradZuse
the book does 2 eq's which is really annoying....
KonradZuse
  • KonradZuse
how they would both be the same, so it seems like it's not an augmented matrix....
TuringTest
  • TuringTest
row reduce, what do you get?
KonradZuse
  • KonradZuse
OOOOOOOOOOOOOOOo There's a Null Space/Nullity thing on Maple hehehe. I guess it isn't augmented then :D
TuringTest
  • TuringTest
no, it's not
KonradZuse
  • KonradZuse
1 0 1 -2/7 0 1 1 4/7 0 0 0 0
KonradZuse
  • KonradZuse
now I actually found something that says the num space is the subspace of vectors x satisfying A. x = 0
KonradZuse
  • KonradZuse
it shows the null space as 2/7 -4/7 0 1 then another column matrix next to it. -1 -1 1 0..
KonradZuse
  • KonradZuse
Is there a matrix thing in the equations..... This is stupid writing it out like this :P.
KonradZuse
  • KonradZuse
oh I found it.... :)
TuringTest
  • TuringTest
setting up matrices with latex is a pain, you are doing it the easy way
KonradZuse
  • KonradZuse
HJHAHAH
KonradZuse
  • KonradZuse
\[\left(\begin{matrix}2/7 \\-4/7\\ 0\\ 1\end{matrix}\right), \left(\begin{matrix}-1 \\-1\\ 1\\ 0\end{matrix}\right)\]
TuringTest
  • TuringTest
yes, you get that from 1 0 1 -2/7 x1+r-2/7s=0->x1=-r+2/7s 0 1 1 4/7 x2+r+4/7s=0->x2=-r-4/7s collect the r's in one vector and the s's in another
KonradZuse
  • KonradZuse
my eyes they burn.... :)
KonradZuse
  • KonradZuse
you're so smart TT :Pe
TuringTest
  • TuringTest
first row of your matrix reduced: 1 0 1 -2/7 this is the same as the equation x1+r-2/7s=0 which leads to x1=-r+2/7s and thanks, but I need to get better at computer stuff now, so maybe I'll need your help sorry, back in 15
KonradZuse
  • KonradZuse
yeah yeah yeah!

Looking for something else?

Not the answer you are looking for? Search for more explanations.