Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

If the probability density of a random variable is given by: f(x)= Kx^2 for 0

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

So that I'm understanding this correctly. I'm finding the value of "k" in order to verify that the function f(x)=kx^2 is a probability density function based on these conditions: f(x)>=0 and f(x) dx = 1 when x is between -infinity and infinity.
Therefore, \[f(x)=\int\limits_{0}^{1}kx^2dx=k \frac{ x^3 }{ 3 }_{0}^{1}=k/3=1\] so k=3
From here I'm plugging in the limits between 1/4 (.25) and 3/4 (.75). \[\int\limits_{.25}^{.75}kx^2dx=k \frac{ x^3 }{ 3 }_{.25}^{.75}=k(\frac{ .4218-.0156 }{ 3 })=.4062/3=.1354k\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

I have a filling I did that last step wrong.
thats correct, 0.1354*3=0.4062 is the correct probability for a)
you know how to do part b), right ?
^ alright good. For (b) do I convert f(x) into F(x), which is the distribution function then plug in the limit .67 (or 2/3) for F(x) and then minus that from 1 like so? Find: \[P(x>.67)\] \[F(x)=\int\limits_{0}^{x}kx^2dx=kx^3/3\] \[F(.67)=3*.67^3/3=.902289/3=.3008\] \[1-.3008=.70\]
that is correct, but there is also another way. \(\huge \int \limits_{(2/3)}^1 kx^2dx=....\) and u get same result 0.703
yes that makes sense as well. Thanks.
welcome ^_^

Not the answer you are looking for?

Search for more explanations.

Ask your own question