anonymous
  • anonymous
A machinist creates a washer by drilling a hole through the center of a circular piece of metal. If the piece of metal has a radius of x + 10 and the hole has a radius of x + 6, what is the area of the washer?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
richyw
  • richyw
ok so you have two circles. The area of the washer is the area of the piece of metal minus the area of the hole.\[A_{washer}=A_{metal}-A_{hole}\]
richyw
  • richyw
both are circles and the area of a circle with radius \(r\) is \(A=\pi r^2\)
richyw
  • richyw
so let \(r\) be the radius of the hole, and \(R\) be the radius of the metal. Then you have\[A_{washer}=\pi R^2-\pi r^2=\pi\left(R^2-r^2\right)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

richyw
  • richyw
Ok so from here there are a few ways you can go. I prefer just to plug in the values, expand it out, and simplify\[A_{washer}=\pi\left((x^2+20x+100)-(x^2+12x+36)\right)\]\[A_{washer}=\pi\left(20x+100-12x-36\right)\]\[A_{washer}=\pi\left(8x+100-36\right)\]\[A_{washer}=\pi\left(8x+64\right)\]
richyw
  • richyw
\[A_{washer}=8\pi(x+8)\]
richyw
  • richyw
this is of course assuming that the washer is 2D.

Looking for something else?

Not the answer you are looking for? Search for more explanations.