Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

why is the area of a rectangle base x height? Why is a non-rectangular parallelogram base x height and is this true?

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

yes this is true. You can show it many ways. But basically if you consider the parallelogram made up of two vectors in a plane. The area is the cross product of these vectors. If you put b so that it is in the direction of one of the axis you have h as the component of the second vector in the opposite plane. So the cross product would give you base*height.
Area is measured in a fancy derived unit: "squared (unit)". I think it would be easiest to show if you split the rectangle into "unit squares;" i.e., they are squares of a side length of one unit. |dw:1352689557487:dw| A fast way to count the number of squares here inside the rectangle is simply multiplying your number of columns by your number of rows. Thus, base times the height. A parallelogram is quite interesting as well. If we have a parallelogram here, consider rearranging things. |dw:1352689759240:dw| We only move pieces around, so the area has not changed. However, we effectively can fill the gap on one side of the parallelogram with the other side! Thus, it makes a rectangle. We already know the routine from there: base x height. :)
okay thanks. i understand it better now.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

You're welcome! :)
could u help me with my other math problem about tennis balls

Not the answer you are looking for?

Search for more explanations.

Ask your own question