Find the max/min values for P(x) = -2x^2 +8x-1

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the max/min values for P(x) = -2x^2 +8x-1

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

on a graphing calculator it reads that 7 is the local maximum (y=7)
*The first way, find the x-vertec by use formula x=-b/2a = -8/2(-2) = 2 to find the max value, just plug x=2 to P(x) so, P(2) = -2(2)^2+8(2)-1=7 *The 2nd way, use the formula y=-D/4a (with D=b^2-4ac) y_max = -(8^2-4(-2)(-1))/4(-2) = -(64-8)/-8 = -56/-8 = 7
@oheneba do you know calculus?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

To an extent
you dont even need calculus, just use the vertex formula you learn in algebra. you know it is a parabola that opens down, so you will have a max value. it will be the y component of the vertex
Thanks

Not the answer you are looking for?

Search for more explanations.

Ask your own question