anonymous
  • anonymous
Lagrange multiplier question, please help I continously get the imaginary # 5iradical 5 as olambda surface is f(x,y,z) = x^2+2y^2-z^2+4xy=250 compute coordinartes of every pt on surface at which the tangent plane is parallel to the plane x-2y+z=20
MIT 18.02 Multivariable Calculus, Fall 2007
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
Hi! You haven't said how you approached to solve the problem. The way I did is like this: \[\nabla f = <(2x+4y),(4x+4y),(-2z)>\] and \[\nabla g = <1,-2,1>\] The equations are: \[\nabla f = \lambda \nabla g, g = c\] This gave me a the following matrix equation: \[\left[\begin{matrix}2 & 4 & 0 & -1 \\ 4 & 4 & 0 & 2\\ 0 & 0 & -2 & -1\\ 1 & -2 & 1 & 0\end{matrix}\right] \left[\begin{matrix}x \\ y \\z\\ \lambda \end{matrix}\right] = \left[ \begin{matrix}0 \\ 0 \\0\\ 20 \end{matrix}\right]\] The solution to this is: x = 7.5, y = -5, z = 2.5 and lambda = -5 Next, I would find the equation to the tangent plane at (x,y,z) = (7.5,-5,2.5) and that should give the final solution... I'm really not sure if I am correct... I haven't verified my results! Will post if/when I verify my results. Perhaps someone else can let me know if I am right or wrong??
anonymous
  • anonymous
I think you are correct!

Looking for something else?

Not the answer you are looking for? Search for more explanations.