Here's the question you clicked on:
gerryliyana
Checking my answer:
Determine the solution! \[\frac{ dy }{ dx } =-\frac{ x }{ y }\] for y(0) =4 \[y dy = -x dx\] \[\int\limits_{4}^{y} y dy = - \int\limits_{0}^{x} x dx\] \[\frac{ y ^{2} }{ 2 } - \frac{ (2^{2}) }{ 2 } = -\frac{ x ^{2} }{ 2 } \] \[\frac{ y ^{2} }{ 2 } - 2 = -\frac{ x ^{2} }{ 2 }\] \[\frac{ y ^{2} }{ 2 } = 2 - \frac{ x ^{2} }{ 2 }\] \[y ^{2} = 4 - x ^{2}\] \[y = \sqrt{4 -x ^{2}}\]
it looks right 2 mee:)
ok, thank u @kelly226 :)