Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

given (1+t)y' +y= cos(t) , y(0)=1 , I tried solving it using P(x) and q(x). So far I have d/dt(yt) = integral (cost/(1+t))*t dt...I'm stuck with the right side.

Differential Equations
I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

think you're making it too hard...
\[(t+1)y' + y = ( (t+1)*y)'\]
make sense?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

sorry i'm just trying it out
k :)
am i suppose to end up with something like this?\[y dy=cost/(t+1) dt\] and then integrate both sides?
hmm you're mixing methods:) you have:
\[( (t+1)*y)' = \cos(t)\]
\[\int\limits_{ }^{ }( (t+1)*y)' = \int\limits_{ }^{ }\cos(t)\]
\[(t+1)*y= \sin(t) +C\] whoops
ok i'll try this out..thanks
I'm too stupid to solve in this way... \[(1+t)y' +y= cos(t)\]\[y' +\frac{1}{1+t}y= \frac{1}{1+t}cos(t)\] Nice :) \[\alpha = e^{\int\frac{1}{1+t}dt}=e^{\ln|1+t|} = 1+t\]\[y=\frac{1}{\alpha}\int \alpha \times \frac{1}{1+t}cos(t) dt = \frac{1}{1+t}\int (1+t) \times \frac{1}{1+t}cos(t) dt \]\[= \frac{1}{1+t}\int cost dt =...\] Why can't I make my life easier :'(
oh wow i made a mistake when taking the integral of \[\int\limits1/(1+t) \] no wonder it wouldn't come out nicely..thanks
thanks to both for your help!!

Not the answer you are looking for?

Search for more explanations.

Ask your own question