anonymous
  • anonymous
Is this a subspace of R3? The set of all vectors of the form where a+b+c = 0
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I think you misunderstood the question. a, b, and c are components of the vector, not vectors themselves. This set of vectors forms a plane through the origin, and therefore constitutes a subspace.
anonymous
  • anonymous
You can easily check the requirements for a subspace, also -- i.e. multiply any such vector by a scalar and its components will still add to zero, and the sum of any two such vectors is another vector whose components add to zero.
anonymous
  • anonymous
Thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.