Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

wts d integration of (x^2+a^2)dy/dx=(y+b)(x+sqrt(x^2+a^2))

I got my questions answered at in under 10 minutes. Go to now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly


Get your free account and access expert answers to this and thousands of other questions

you need to solve the diff eqn?
ya by variable separable
x wali sari expressions ek side karlo

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

its nt workin :(
you have dy / (y+b) = (x+sqrt(x^2 + a^2))dx / (x^2 + a^2) isnt it?
so now wheres the problem?
m nt gettin hw 2 go ahead
ok the left hand side is clear to you isnt it??
yup d right one s mes
so fr the right side break the fraction into 2 parts
\[\frac{x}{x^2 + a^2} + \frac{1}{\sqrt(x^2 + a^2)}\]
ab aaya?
i gt it thanks:)
u on fb??
can i hav ur id??
\[(x^2+a^2)\frac{\text dy}{\text dx}=(y+b)(x+\sqrt{x^2+a^2})\] \[\frac{\text dy}{y+b}=\frac{x+\sqrt{x^2+a^2}}{x^2+a^2}{\text dx}\] \[\int\frac{\text dy}{y+b}=\int\frac{x+\sqrt{x^2+a^2}}{x^2+a^2}{\text dx}\]
then uses these standard integrals for \(\alpha,\beta,\gamma\in\mathbb R\) \[\int\frac{\text du}{u+\alpha}=\ln|u+\alpha|\] \[\int\frac{v}{v^2+\beta^2}\text dv=\frac12\ln|v^2+\beta^2|\] \[\int\frac1{\sqrt{w^2\pm \gamma^2}}\text dw=2\sqrt{ x\pm\gamma}=\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question