Find dy/dx for y=ln(5−x)^6

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find dy/dx for y=ln(5−x)^6

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[y = \ln(5-x)^6\] take derivative : \[\frac{dy}{dx} = 6 \cdot \ln(5-x)^5 \frac{d(5-x)}{dx}\]
It is by chain rule.. In chain rule we are using power rule also which says : \[y = f(x)^n\] \[\frac{dy}{dx} = n \cdot f(x)^{n-1} \cdot \frac{d(f(x))}{dx}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Wait, isn't that in the case that the 6th power would be to the entire thing? I thought you brought the 6 in front since lna^b=blna
\[\frac{dy}{dx} = 6 \cdot \ln(5-x)^5 \frac{d(\ln(5-x)}{dx} \cdot \frac{d(5-x)}{dx}\]
ln((x-5)^6) = 6ln(x-5) ( 6ln(x-5) ) ' = 6/(x-5)
Mixing up things...
oh! duh! Got it, thank you!!1
\[y = \ln(5-x)^6\] \[\frac{dy}{dx} = \frac{1}{(5-x)^6} \times 6 \times (5-x)^5 \times (-1)\]
Is this right???
It will reduce to : \[\frac{dy}{dx} = \frac{-1}{(5-x)}\]
ln((5-x)^6) = 6ln(5-x) ( 6ln(5-x) ) ' = -6/(5-x)
Forgot 6 there.. Oh God...
\[\frac{dy}{dx} = \frac{-6}{(5-x)}\]
Yes by power rule, you can bring 6 in front: \[y = 6 \cdot \ln(5-x)\] Now take the derivative..
Okay, I've got it figured out! Thank you! If you'd like to help some more I just posted another question :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question