UnkleRhaukus
  • UnkleRhaukus
\[\int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt\]
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \\\int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt&=\mathcal L\left\{\int_0^te^{t-u}\sin(u)\text du\right\}_{p\rightarrow3}\\ \\&=\mathcal L\left.\left\{\mathcal L\{e^t*\sin(u)\}\right\}\right|_{p\rightarrow3}\\ \\&=\mathcal L\left.\left\{\frac{1}{p-1}\times\frac{1}{p^2+1^2}\right\}\right|_{p\rightarrow3}\\ \\&= \end{align*}\]
anonymous
  • anonymous
I could literally mash the keyboard for 12 straight minutes, and I would understand it better than I would that.
anonymous
  • anonymous
\[u = \frac{1}{2} i (t-\log(e^{t}))\] right?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
i have this , but it dosent seam right to me for some reason \[\begin{align*} \\&=\mathcal L\left\{\frac{1}{3-1}\times\frac{1}{3^2+1}\right\} \\&=\mathcal L\left\{\frac{1}{2}\times\frac{1}{10}\right\} \\&=\frac 1{20} \end{align*}\]
anonymous
  • anonymous
Oh, I honestly have no clue. I put it in Wolfram Alpha and it told me that was a root. It makes no sense to me, but 1/20 is a nice answer. ;)
UnkleRhaukus
  • UnkleRhaukus
ah, this makes more sense , i see where i was getting confused now , \[\begin{align*} \int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt \\&=\mathcal L\left\{\int_0^te^{t-u}\sin(u)\text du\right\}_{p\rightarrow3} \\&=\mathcal L\left.\left\{e^t*\sin(u)\right\}\right|_{p\rightarrow3} \\&=\left(\left.\mathcal L\left\{e^t\right\}\times\mathcal L\left\{\sin(u)\right\}\right)\right|_{p\rightarrow3} \\&=\left(\left.\frac{1}{p-1}\times\frac{1}{p^2+1^2}\right)\right|_{p\rightarrow3} \\&=\frac{1}{3-1}\times\frac{1}{3^2+1}\\&=\frac{1}{2}\times\frac{1}{10}\\ \\&=\frac 1{20} \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.