Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

\[\int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt\]

Calculus1
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
\[\begin{align*} \\\int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt&=\mathcal L\left\{\int_0^te^{t-u}\sin(u)\text du\right\}_{p\rightarrow3}\\ \\&=\mathcal L\left.\left\{\mathcal L\{e^t*\sin(u)\}\right\}\right|_{p\rightarrow3}\\ \\&=\mathcal L\left.\left\{\frac{1}{p-1}\times\frac{1}{p^2+1^2}\right\}\right|_{p\rightarrow3}\\ \\&= \end{align*}\]
I could literally mash the keyboard for 12 straight minutes, and I would understand it better than I would that.
\[u = \frac{1}{2} i (t-\log(e^{t}))\] right?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i have this , but it dosent seam right to me for some reason \[\begin{align*} \\&=\mathcal L\left\{\frac{1}{3-1}\times\frac{1}{3^2+1}\right\} \\&=\mathcal L\left\{\frac{1}{2}\times\frac{1}{10}\right\} \\&=\frac 1{20} \end{align*}\]
Oh, I honestly have no clue. I put it in Wolfram Alpha and it told me that was a root. It makes no sense to me, but 1/20 is a nice answer. ;)
ah, this makes more sense , i see where i was getting confused now , \[\begin{align*} \int_0^\infty e^{-3t}\int_0^te^{t-u}\sin(u)\text du\text dt \\&=\mathcal L\left\{\int_0^te^{t-u}\sin(u)\text du\right\}_{p\rightarrow3} \\&=\mathcal L\left.\left\{e^t*\sin(u)\right\}\right|_{p\rightarrow3} \\&=\left(\left.\mathcal L\left\{e^t\right\}\times\mathcal L\left\{\sin(u)\right\}\right)\right|_{p\rightarrow3} \\&=\left(\left.\frac{1}{p-1}\times\frac{1}{p^2+1^2}\right)\right|_{p\rightarrow3} \\&=\frac{1}{3-1}\times\frac{1}{3^2+1}\\&=\frac{1}{2}\times\frac{1}{10}\\ \\&=\frac 1{20} \end{align*}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question