determine whether the series converges or diverges:

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

determine whether the series converges or diverges:

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\sum_{1}^{\infty} (lnk)/(e ^{\sqrt{k}})\]
0
what test did you use?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

when u find the limiting value \[U_{k+1}/U_{n}\]
\[\left| U _{k+1}/U_{k} \right|\]
can you kinda show me how you got zero?
\[ U_{k} = \ln(k)/e^{k} , U_{k+1} = \ln(k+1)/e^{k+1} \]\[ \therefore \left| U_{k+1}/U_{k} \right| = \ln(k+1)/e^{k+1} \times e^{k}/\ln(k)\]
\[ \ln(1) \times e^{\sqrt(k)-\sqrt(k+1)} = 0\]
did that help ?
great! thanks :)
what was the answer in the text book ?
it wasn't from my textbook so i don't know the right answer but that looks right.

Not the answer you are looking for?

Search for more explanations.

Ask your own question