anonymous
  • anonymous
determine whether the series converges or diverges:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\sum_{1}^{\infty} (lnk)/(e ^{\sqrt{k}})\]
EarthCitizen
  • EarthCitizen
0
anonymous
  • anonymous
what test did you use?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

EarthCitizen
  • EarthCitizen
when u find the limiting value \[U_{k+1}/U_{n}\]
EarthCitizen
  • EarthCitizen
\[\left| U _{k+1}/U_{k} \right|\]
anonymous
  • anonymous
can you kinda show me how you got zero?
EarthCitizen
  • EarthCitizen
\[ U_{k} = \ln(k)/e^{k} , U_{k+1} = \ln(k+1)/e^{k+1} \]\[ \therefore \left| U_{k+1}/U_{k} \right| = \ln(k+1)/e^{k+1} \times e^{k}/\ln(k)\]
EarthCitizen
  • EarthCitizen
\[ \ln(1) \times e^{\sqrt(k)-\sqrt(k+1)} = 0\]
EarthCitizen
  • EarthCitizen
did that help ?
anonymous
  • anonymous
great! thanks :)
EarthCitizen
  • EarthCitizen
what was the answer in the text book ?
anonymous
  • anonymous
it wasn't from my textbook so i don't know the right answer but that looks right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.