anonymous
  • anonymous
The 2 × 2 real symmetric matrix A has two distinct eigenvalues, λ1 and λ2. If v1 = (1, 2) is an eigenvector of A corresponding to the eigenvalue λ1, determine an eigenvector corresponding to λ2.
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

experimentX
  • experimentX
|dw:1352913596086:dw||dw:1352913731194:dw|
experimentX
  • experimentX
2 equations 3 unknowns, .. .all the terms of the matrix can be expressed as single variable.
experimentX
  • experimentX
sorry i guess that not easy solving for whole family of matrices, is any info given about the eigen values?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Nothing any other details..
anonymous
  • anonymous
http://www.math.purdue.edu/~beranger/262/ch5/5-10.pdf ...If you have second check this out and help mee!!!!1
anonymous
  • anonymous
|dw:1352951339108:dw|
anonymous
  • anonymous
|dw:1352951447173:dw|
anonymous
  • anonymous
|dw:1352951532396:dw|
anonymous
  • anonymous
I got the point.....thanks a lots.....
anonymous
  • anonymous
|dw:1352951690500:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.