Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Implicit Differentiation, please help! \(\ \large cos(x-y)=xe^x . \)

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Implicit D, is basically the chain rule without finishing. In general you have something like \[f(x) = (\text{stuff})^5\] and \[f'(x) =5(\text{stuff})^4 (\text{stuff})^{\prime}\] Well you do the same thing here except when you have to do something like \[\frac{d}{dx} y^2= 2y y'\] So for example Implicit D of \[\sin\bigg(xy^2\bigg)\] give \[\cos\bigg(xy^2\bigg)\cdot\bigg( y^2 + x\cdot(2yy^{\prime})\bigg)\]
What I'm not understanding is that cos(x-y) part. How do I take the derivative of that??
If you substituted u(x) for (x-y) you would have \[\frac{d}{dx} \cos(u(x))\] which according to the chain rule would be \[-\sin(u(x)\cdot (u'(x))\] do you follow that?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Sorry that should be \[-sin(u(x))\cdot (u'(x))\]
So the two function we have here are cos x and x-y? So we would use the chain rule?
yes. the only thing is that when you take the derivative of u(x) you are taking the derivative of "x-y" with respect to x. So you would have \[\frac{d}{dx}x + \frac{d}{dx}y\] which becomes \[1 + \frac{d}{dx}y\] or \[1 + y'\] The fact that you don't finish taking the derivative of y, because you don't know what it is is the "unfinished" part of the chain rule.
crap, put a minus sign there in front of the y and y prime
So for the derivative of x-y, with would be 1- y dy/dx ? Why doesn't the y become a one too?
no it would be 1 -dy/dx you're instincts are correct
\[\frac{d}{dx}(x-y) \to\frac{d}{dx}(x)+\frac{d}{dx}(-y) \to 1+y' \]
Okay, so what should the correct answer be? So I can check if I did this correctly??
So for an exponential function \[\frac{d}{dx} e^{x^2y^3}\to e^{x^2y^3}\frac{d}{dx}(x^2y^3) \] and so on
Okay. Thanks!
I've been explicitly warned not to give answers to problems directly. The best I can do is give similar examples and hope that it helps. The general process though is to implicitly differentiate both sides and then collect and isolate the y'. so if you had \[x+y' = \sin(x) + xy'\] you would isolate the terms with y prime, factor y prime out and then divide by the non y prime factor. \[x+y' -\sin(x)= -y' + xy'\] \[x-\sin(x)= y'(-1 + x)\] \[\frac{x-sin(x)}{1-x}=y'\] notice for this problem you will not get a y prime on the RHS since there is no y variable in that function.

Not the answer you are looking for?

Search for more explanations.

Ask your own question