anonymous
  • anonymous
Set up the double integral for the volume bounded between the surface z=xy^2 and the plane z-3y-x. 0
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

amistre64
  • amistre64
|dw:1352988377508:dw|
amistre64
  • amistre64
hmmm, does the plane the the surface intersect ?
TuringTest
  • TuringTest
Shouldn't the formula for the plane have an equals somewhere?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

amistre64
  • amistre64
1 Attachment
amistre64
  • amistre64
|dw:1352988979091:dw| pfft, i cant get a clear idea of the shape
amistre64
  • amistre64
z=xy^2 and the plane z-3y-x. 0
amistre64
  • amistre64
\[\int_{-3\sqrt3/2}^{3\sqrt3/2}~\int_{0}^{\sqrt3}~\int_{3y+x}^{xy^2} ~dz~dy~dx\] maybe
amistre64
  • amistre64
\[\int_{-3\sqrt3/2}^{3\sqrt3/2}~\int_{0}^{\sqrt3}~{xy^2}-{(3y+x)}~dy~dx\] \[\int_{-3\sqrt3/2}^{3\sqrt3/2}~{\frac13x(\sqrt3)^3}-{(\frac1233+x\sqrt3)}~dx\] \[\int_{-3\sqrt3/2}^{3\sqrt3/2}~{x\sqrt3}-{\frac92-x\sqrt3}~dx\] \[\int_{-3\sqrt3/2}^{3\sqrt3/2}~-\frac92~dx\] its either zero or i might have my bounds mismathed
anonymous
  • anonymous
Sorry that was actually suppose to be z=3y-x.
anonymous
  • anonymous
So the curve would equal C = xy^2 -3y+x
anonymous
  • anonymous
Sorry :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.