Prove this trig identity csc^4-csc^2=cot^4+cot^2

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Prove this trig identity csc^4-csc^2=cot^4+cot^2

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

|dw:1353025115000:dw|
look at the LHS...try factoring out csc^2 what do you get?
|dw:1353025247991:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

not exactly....if you factor out csc^2 then csc^4 becomes csc^2 but csc^2 doesn't become csc^2
|dw:1353025341525:dw|
Would it even exist, that is, would it cancel? Or just be csc?
what is csc^2/csc^2?
ohhhh. I feel dumb. Got ya.
so what should the factored form be?
|dw:1353025535036:dw|
right
now what is csc^2 - 1?
cot?
cot^2
so uou have \[\huge \csc^2 (\cot^2)\] now here comes a tricky part...review your identities and give me the equation for csc^2
csc2 = 1/sin...it also equals cot+1
cot^2 + 1 not cot + 1
Sorry, your exactly right.
you should check your notes and make sure you wrote them right....you might get them wrong... \[\huge \sin^2 + \cos^2 = 1\] \[\huge \tan^2 + 1 = \sec^2\] \[\huge \cot^2 + 1 = \csc^2\]
anyway...back to what i was saying... csc^2 is cot^2 + 1 so \[\huge \csc^2 (\cot^2) \implies (\cot^2 + 1)(\cot^2)\] now expand that
would the lhs say csc cot ^4? The RHS is cot^4 +cot^2
i think you're confused...let me flip it... \[\huge \cot^2 \theta (\cot^2\theta + 1)\] do you know how to distribute that now?
Its not that I'm confused as much as tired my friend. |dw:1353026333309:dw|
well anyway... cot^2(cot^2 + 1) becomes cot^4 + cot^2 so you have just proven the identity
Thanks!!!!!!!
welcome

Not the answer you are looking for?

Search for more explanations.

Ask your own question