Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

\[\lim_{x\to 0}\left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}}.\]
sorry, thats kind of hard to see.
\[\LARGE \lim_{x\to 0}\left(\frac{(1+x)^{\frac{1}{x}}}{e}\right)^{\frac{1}{x}}.\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[ \Large e = \lim_{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^n \]When you reparameterize: \(x=1/n\) \[\Large e = \lim_{x \rightarrow 0}\left(1+x\right)^\frac{1}{x} \]
So it's a matter of settling that outer 1/x
I haven't learned 'reparameterize' yet, so I would assume I wouldn't have to use that... Supposed to use L'Hospital's rule
Okay, then you need to have an indeterminate form of \(\infty /\infty\) or \(0/0\)
right.
|dw:1353045336700:dw|
|dw:1353045499277:dw|
@mahmit2012 I am supposed to use L'Hospital's rule.
I can't read that bottom line.
"and in this case it is 1/sqrt(e)
No, of the previous picture
I don't know
Okay, let's start with bringing in the \(1/x\) to the numerator and denominator and figuring out if that is an indeterminate form.
|dw:1353047217870:dw|
|dw:1353047297672:dw|
@waterineyes can you help me understand this maybe?

Not the answer you are looking for?

Search for more explanations.

Ask your own question