anonymous
  • anonymous
cot x sec4x = cot x + 2 tan x + tan3x
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Is this equation or identity?
anonymous
  • anonymous
Verify each trigonometric equation by substituting identities to match the right hand side of the equation to the left hand side of the equation.
ganeshie8
  • ganeshie8
\(\cot x \sec^4 x = \cot x + 2 \tan x + \tan^3 x \)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ganeshie8
  • ganeshie8
its like above ?
anonymous
  • anonymous
huh?
ganeshie8
  • ganeshie8
*the equation u seeing in ur assessment sheet, is it like the one ive posted above ?
anonymous
  • anonymous
its tan cubed x at the end other then that yes
ganeshie8
  • ganeshie8
ok thnks :) pick the side that has more terms, and do SOMETHING and try getting to the other side
ganeshie8
  • ganeshie8
here, the right side has more terms, right ?
anonymous
  • anonymous
what? the irght side has more terms yeah
ganeshie8
  • ganeshie8
ya so we start with that side, and work, and prove that it equals left side.
anonymous
  • anonymous
okay
ganeshie8
  • ganeshie8
\(\cot x + 2\tan x + \tan^3 x\) \(\frac{1}{\tan x} + 2\tan x + \tan^3 x\) \(\frac{1+ 2\tan^2 x + \tan^4 x}{\tan x}\) \(\frac{1+ \tan^2 x + \tan^2x + \tan^4 x}{\tan x}\) \(\frac{\sec^2 x + \tan^2x + \tan^4 x}{\tan x}\) \(\frac{\sec^2 x + \tan^2x(1 + \tan^2 x)}{\tan x}\) \(\frac{\sec^2 x + \tan^2x(\sec^2 x)}{\tan x}\) \(\frac{\sec^2 x(1 + \tan^2x)}{\tan x}\) \(\frac{\sec^2 x(\sec^2 x)}{\tan x}\) \(\frac{\sec^4 x}{\tan x}\) \(\cot x\sec^4 x\) = LEFT HAND SIDE
ganeshie8
  • ganeshie8
thats the complete solution; see if it makes sense
anonymous
  • anonymous
good solve ganeshie.,...........
anonymous
  • anonymous
How did you get rid of the tan^4x? @ganeshie8?
mayaal
  • mayaal
@ganeshie8 i dont understand ur solution
ganeshie8
  • ganeshie8
hmm which line ?
mayaal
  • mayaal
the 3rd line from the end.
ganeshie8
  • ganeshie8
\[\large \frac{\sec^2 x + \tan^2x(\sec^2 x)}{\tan x}\]
ganeshie8
  • ganeshie8
you're fine, till this line ?
mayaal
  • mayaal
yes
ganeshie8
  • ganeshie8
good, next factor out `sec^2x` from both terms, you get : \[\large \frac{\sec^2 x(1 + \tan^2x)}{\tan x}\]
ganeshie8
  • ganeshie8
still fine ?
mayaal
  • mayaal
oh,ok.so u factored out the sec^2x from the whole numerator?
ganeshie8
  • ganeshie8
exactly !
mayaal
  • mayaal
great!thnku very much @ganeshie8
ganeshie8
  • ganeshie8
np :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.