\[\mathcal L\left\{e^{-t^2}\right\}=\]

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

\[\mathcal L\left\{e^{-t^2}\right\}=\]

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

\[\begin{align*} \mathcal L\left\{e^{-t^2}\right\}&= \int\limits_0^\infty e^{-t^2}e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-t(p+t)}\cdot\text dt\\ \end{align*}\]
I would think that any base, including e, when raised to a negative exponent, becomes a decay problem that approaches 0.
hmm?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Maybe completing the square would be helpful? I did a similar problem (it was the only 'question' i asked) and it seemed to work out well for that one. http://puu.sh/1r1nO
\[\begin{align*} \mathcal L\left\{e^{-t^2}\right\}&= \int\limits_0^\infty e^{-t^2}e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-(t^2+pt)}\cdot\text dt\\ &=\int\limits_0^\infty e^{-\left(t^2+pt+\left(\tfrac p2\right)^2\right)+\left(\tfrac p2\right)^2}\cdot\text dt\\ &=e^{\left(\tfrac p2\right)^2}\int\limits_0^\infty e^{-\left(t+\tfrac p2\right)^2}\cdot\text dt\\ &=e^{\tfrac {p^2}4}\int\limits_0^\infty e^{-\left(t+\tfrac p2\right)^2}\cdot\text dt\\ \text{let }t+\tfrac p2=w\\ \text dt=\text dw\\ t=0\rightarrow w=\tfrac p2\\ t=\infty\rightarrow w=\infty\\ &=e^{\tfrac {p^2}4}\int\limits_{\tfrac p2}^\infty e^{-w^2}\cdot\text dw\\ &=e^{\tfrac {p^2}4}\left(\frac{\sqrt\pi}{2}\text{erfc}\left(\tfrac p2\right)\right)\\ &=\frac{\sqrt\pi}{2}e^{\tfrac {p^2}4}\text{erfc}\left(\tfrac p2\right)\color{red}\checkmark\\ \end{align*}\]
thankyou @AccessDenied
You're welcome! :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question