anonymous
  • anonymous
Logarithm Question!!!
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Evaluate in terms of p \[\log_{c} b\] if ... \[\log_{b}a =p \] and c=a^2
hartnn
  • hartnn
put a = \(\sqrt c\) in that and tell me what u get ?
anonymous
  • anonymous
log _b (root c) = p

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
right , now use the property that \(\log x^y=y \log x\) so what will be \(\log_b c^{1/2} = ? \)
anonymous
  • anonymous
1/2 (log_b (c))
hartnn
  • hartnn
right, that is p, so what is (log_b (c)) = ?
dumbcow
  • dumbcow
what a fun problem...i won't spoil the solution and let hartnn explain the steps
anonymous
  • anonymous
um....2p
hartnn
  • hartnn
thats correct. then use the property that \(\huge \log_xy=\frac{\log y}{\log x} = \frac{1}{\log_yx}\)
hartnn
  • hartnn
(log_b (c)) = 2p so whats (log_c (b)) = ?
anonymous
  • anonymous
lol i am not fimiliar with that property.. but it equals 1/(2p)
hartnn
  • hartnn
yes, 1/(2p) is correct. its one of the very useful properties of log. u want a list of all the log properties ?
anonymous
  • anonymous
yes please XD
anonymous
  • anonymous
thank you!
hartnn
  • hartnn
welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.