anonymous
  • anonymous
Let H be the subspace of R^4 given by H = {(r, s, t, u)^T | r, s, t, u ∈ R, r − 2s + t + 3u = 0 and s + t − 4u = 0 } Find a basis for H and determine dim H.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I don't know anything
TuringTest
  • TuringTest
I'm afraid my linear algebra is a bit shoddy, but @Zarkon surely know what do to, though he remains silent.
TuringTest
  • TuringTest
don't we just set up the augmented matrix and collect the s,t, and u parts as separate vectors?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TuringTest
  • TuringTest
\[\left[\begin{matrix}1&-2&1&3\\0&1&1&-4\end{matrix}\right]=\binom 00\]\[\left[\begin{matrix}1&0&3&-5\\0&1&1&-4\end{matrix}\right]=\binom 00\]\[x_1=-3t+5u\]\[x_2=-t+4ut\]\[x_3=t\]\[x_4=u\]\[\vec x=t\binom{-3}{-1}+u\binom54\]am I on the right track?
Zarkon
  • Zarkon
the vectors in H are 4-tuples. Any basis vector will also be a 4-tuple
TuringTest
  • TuringTest
so\[\vec v_1=\left[\begin{matrix}1\\0\\-3\\-5\end{matrix}\right]\]\[\vec v_2=\left[\begin{matrix}0\\1\\5\\4\end{matrix}\right]\]??? (linear algebra review needed obviously)
Zarkon
  • Zarkon
\[\left[\begin{matrix}1&0&3&-5\\0&1&1&-4\end{matrix}\right]\] which uses the variables r,s,t,u so t and u are free variables...call them x and y respectively then r=-3x+5y and s= -x+4y then \[\left[\begin{matrix}r\\s\\t\\u\end{matrix}\right]=\left[\begin{matrix}-3x+5y\\-x+4y\\x\\y\end{matrix}\right]\] \[=\left[\begin{matrix}-3\\-1\\1\\0\end{matrix}\right]x+\left[\begin{matrix}5\\4\\0\\1\end{matrix}\right]y\]
TuringTest
  • TuringTest
oh, I meant a -3 in the first vector, but put a 5 instead well, I was almost close... thanks Zarkon
TuringTest
  • TuringTest
meant a -1*
anonymous
  • anonymous
Thank you so much!

Looking for something else?

Not the answer you are looking for? Search for more explanations.