Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Let H be the subspace of R^4 given by H = {(r, s, t, u)^T | r, s, t, u ∈ R, r − 2s + t + 3u = 0 and s + t − 4u = 0 } Find a basis for H and determine dim H.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
I don't know anything
I'm afraid my linear algebra is a bit shoddy, but @Zarkon surely know what do to, though he remains silent.
don't we just set up the augmented matrix and collect the s,t, and u parts as separate vectors?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

\[\left[\begin{matrix}1&-2&1&3\\0&1&1&-4\end{matrix}\right]=\binom 00\]\[\left[\begin{matrix}1&0&3&-5\\0&1&1&-4\end{matrix}\right]=\binom 00\]\[x_1=-3t+5u\]\[x_2=-t+4ut\]\[x_3=t\]\[x_4=u\]\[\vec x=t\binom{-3}{-1}+u\binom54\]am I on the right track?
the vectors in H are 4-tuples. Any basis vector will also be a 4-tuple
so\[\vec v_1=\left[\begin{matrix}1\\0\\-3\\-5\end{matrix}\right]\]\[\vec v_2=\left[\begin{matrix}0\\1\\5\\4\end{matrix}\right]\]??? (linear algebra review needed obviously)
\[\left[\begin{matrix}1&0&3&-5\\0&1&1&-4\end{matrix}\right]\] which uses the variables r,s,t,u so t and u are free variables...call them x and y respectively then r=-3x+5y and s= -x+4y then \[\left[\begin{matrix}r\\s\\t\\u\end{matrix}\right]=\left[\begin{matrix}-3x+5y\\-x+4y\\x\\y\end{matrix}\right]\] \[=\left[\begin{matrix}-3\\-1\\1\\0\end{matrix}\right]x+\left[\begin{matrix}5\\4\\0\\1\end{matrix}\right]y\]
oh, I meant a -3 in the first vector, but put a 5 instead well, I was almost close... thanks Zarkon
meant a -1*
Thank you so much!

Not the answer you are looking for?

Search for more explanations.

Ask your own question