DLS
  • DLS
PLEASE HELP!! If the line y=root 3x interests the curve x^3+y^3+3xy+5x^2+3y^2+4x+5y-1=0 At 3 points A,B,C .Then find OA*OB*OC...
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

DLS
  • DLS
|dw:1353211730667:dw| SMT lyk this?
DLS
  • DLS
@sauravshakya
anonymous
  • anonymous
Is O the origin?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

DLS
  • DLS
yes
anonymous
  • anonymous
Is it |dw:1353224657415:dw|
DLS
  • DLS
yes
anonymous
  • anonymous
Is it |dw:1353225679747:dw|
anonymous
  • anonymous
@DLS
DLS
  • DLS
whatts that:o
anonymous
  • anonymous
y=root 3x ..............i x^3+y^3+3xy+5x^2+3y^2+4x+5y-1=0 ............ii Now, From i and ii, (1+3root3)x^3 + (14+3root3)x^2 + (4+5root3)x-1=0 x^3 + (14+3root3)/(1+3root3)x^2 + (4+5root3)/(1+3root3)x -1/(1 + 3root3) =0 Now product of all the roots of this cubic equation is -1/(1+3root3) Now, OA*OB*OC = 8*3root3*product of all the roots of the above cubic equation =-24root3 /(1+3root3)
DLS
  • DLS
its 8/3root3 +1
DLS
  • DLS
\[x^3+y^3+3xy+5x^2+3y^2+4x+5y-1=0\] is the equation :(
DLS
  • DLS
\[y=\sqrt{3}x\] is the line
anonymous
  • anonymous
oh yes it is 8/(3root3 +1) y=root 3x ..............i x^3+y^3+3xy+5x^2+3y^2+4x+5y-1=0 ............ii Now, From i and ii, (1+3root3)x^3 + (14+3root3)x^2 + (4+5root3)x-1=0 x^3 + (14+3root3)/(1+3root3)x^2 + (4+5root3)/(1+3root3)x -1/(1 + 3root3) =0 Now product of all the roots of this cubic equation is -{-1/(1+3root3)} NOTE: it is -ve since it is a cubic equation which has odd number of roots Now, OA*OB*OC = 8*product of all the roots of the above cubic equation =8/(1+3root3)
DLS
  • DLS
explain properly? ://

Looking for something else?

Not the answer you are looking for? Search for more explanations.