anonymous
  • anonymous
find the value sin36.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
DLS
  • DLS
Refer this: http://www.goiit.com/posts/list/trignometry-find-value-of-sin-36-cos-18-1014971.htm
anonymous
  • anonymous
ok
mayankdevnani
  • mayankdevnani
sin(5x) = 16sin^5(x) - 20sin^3(x) + 5sin(x). With x = 36°, we see that: sin[5(36°)] = 16sin^5(36°) - 20sin^3(36°) + 5sin(36°) ==> 16sin^5(36°) - 20sin^3(36°) + 5sin(36°) = sin(180°) ==> 16sin^5(36°) - 20sin^3(36°) + 5sin(36°) = 0, since sin(180°) = 0. Then, if we let u = sin(36°), the equation becomes: 16u^5 - 20u^3 + 5u = 0. By factoring: 16u^5 - 20u^3 + 5u = 0 ==> u(16u^4 - 20u^2 + 5) = 0 ==> u = 0 and 16u^4 - 20u^2 + 5 = 0. However, since sin(36°) > 0 since 36° lies in Quadrant I, u = 0 is discarded. We are now left to solve: 16u^4 - 20u^2 + 5 = 0. (Note that this is just a quadratic equation in u^2) By the Quadratic Formula: (b^2 - 4ac = (-20)^2 - 4(16)(5) = 80): u^2 = [-b ± √(b^2 - 4ac)]/(2a) = (20 ± √80)/32 = (20 ± 4√5)/32 = (5 ± √5)/8. By taking the positive square root (again, u = sin(36°) > 0): u = √[(5 ± √5)/8] = √(10 ± 2√5)/4. At this point, we need to decide which sign we should be pick. To do this, we note that: sin^2(36°) < sin^2(45°) = 1/2. Since the positive square root gives us sin^2(36°) > 1/2 as: (5 + √5)/8 > (5 - 1)/8 = 1/2, we pick the negative sign. Therefore, sin(36°) = √(10 - 2√5)/4. http://answers.yahoo.com/question/index?qid=20110212184922AAbvfnJ

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

mayankdevnani
  • mayankdevnani
ok @sunnymony

Looking for something else?

Not the answer you are looking for? Search for more explanations.