Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus Group Title

Use transform definitions, and the evaluation of a suitable double integral, to calculate the Laplace transform of the following integral (ii)\[\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}\]

  • 2 years ago
  • 2 years ago

  • This Question is Closed
  1. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\\ \end{align*} \]

    • 2 years ago
  2. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \(\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty e^{-pt}[\int \limits_0^tf(t-u)g(u)du]dt \\ &=\int\limits_0^\infty g(u)[\int \limits_u^\infty e^{-pt}f(t-u)dt]du \\ by \:changing \:the\:order\:of \:integration \end{align*}\) the region from u=0 to u=t is same as region from t=u to t=\(\infty\) now, substitute t-u = x in inner integral. then you will be able to split the integrals , one only containing t, and other only containing x....

    • 2 years ago
  3. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    @UnkleRhaukus are u trying that ^ ?

    • 2 years ago
  4. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    yeah im working on it

    • 2 years ago
  5. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    :)

    • 2 years ago
  6. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    numbers ? which numbers ?

    • 2 years ago
  7. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_0^\infty f(t-u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)H(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ \end{align*}\]

    • 2 years ago
  8. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    didn't change the order of integration.....? plus you H is throwing me of...why(and how) its used there ... ?

    • 2 years ago
  9. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure wether or not the unsure the unit heaviside step function

    • 2 years ago
  10. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    if u follow (and understand) what i am suggesting, u don't need H

    • 2 years ago
  11. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\\ \end{align*}\]

    • 2 years ago
  12. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    still, didn't change the order of integration.......

    • 2 years ago
  13. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    u=0 to u=t cahnges to t=u to t=infinity

    • 2 years ago
  14. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    then put t-u=v

    • 2 years ago
  15. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    this question is confusing me

    • 2 years ago
  16. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    whats the confusion about ? changing order of integration ?

    • 2 years ago
  17. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

    • 2 years ago
  18. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1353245519310:dw|

    • 2 years ago
  19. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ \end{align*}\]

    • 2 years ago
  20. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    yes, now u see, how they can be separated into 2 different integrals, both going from 0 to infinity..

    • 2 years ago
  21. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    and both integrals are definition of LT

    • 2 years ago
  22. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\] \[=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{u}^\infty e^{-pv}f(v)\cdot\text dv\quad?\]

    • 2 years ago
  23. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    =L(g(x))L(f(x)) is the most simplified form...

    • 2 years ago
  24. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    when u put v= t-u the limits change to 0 to infinity...

    • 2 years ago
  25. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i dont understand that bit

    • 2 years ago
  26. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    v=t-u when t=u v= 0 when t=infty v=infty

    • 2 years ago
  27. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    everything else is correct.. just limits will be 0 to infinity

    • 2 years ago
  28. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    that is starting to make sense now

    • 2 years ago
  29. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \(=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{0}^\infty e^{-pv}f(v)\cdot\text dv\quad =L[g(t)]L[f(t)]\)

    • 2 years ago
  30. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    ok ?

    • 2 years ago
  31. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    is this all right now? \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u\\ \text dv =\text dt\\ t=u\rightarrow v=0\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{0}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)e^{-up}\cdot\text du\times\int\limits_{0}^\infty f(v)e^{-pv}\cdot\text dv\\ \\&=G(p)F(p) \end{align*}\]

    • 2 years ago
  32. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    yes

    • 2 years ago
  33. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    finally!

    • 2 years ago
  34. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Thank you so much!

    • 2 years ago
  35. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    what a convoluted process

    • 2 years ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.