Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus Group Title

Use transform definitions, and the evaluation of a suitable double integral, to calculate the Laplace transform of the following integral (ii)\[\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}\]

  • one year ago
  • one year ago

  • This Question is Closed
  1. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\\ \end{align*} \]

    • one year ago
  2. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \(\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty e^{-pt}[\int \limits_0^tf(t-u)g(u)du]dt \\ &=\int\limits_0^\infty g(u)[\int \limits_u^\infty e^{-pt}f(t-u)dt]du \\ by \:changing \:the\:order\:of \:integration \end{align*}\) the region from u=0 to u=t is same as region from t=u to t=\(\infty\) now, substitute t-u = x in inner integral. then you will be able to split the integrals , one only containing t, and other only containing x....

    • one year ago
  3. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    @UnkleRhaukus are u trying that ^ ?

    • one year ago
  4. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    yeah im working on it

    • one year ago
  5. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    :)

    • one year ago
  6. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    numbers ? which numbers ?

    • one year ago
  7. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_0^\infty f(t-u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)H(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ \end{align*}\]

    • one year ago
  8. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    didn't change the order of integration.....? plus you H is throwing me of...why(and how) its used there ... ?

    • one year ago
  9. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure wether or not the unsure the unit heaviside step function

    • one year ago
  10. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    if u follow (and understand) what i am suggesting, u don't need H

    • one year ago
  11. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\\ \end{align*}\]

    • one year ago
  12. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    still, didn't change the order of integration.......

    • one year ago
  13. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    u=0 to u=t cahnges to t=u to t=infinity

    • one year ago
  14. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    then put t-u=v

    • one year ago
  15. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    this question is confusing me

    • one year ago
  16. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    whats the confusion about ? changing order of integration ?

    • one year ago
  17. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

    • one year ago
  18. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1353245519310:dw|

    • one year ago
  19. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ \end{align*}\]

    • one year ago
  20. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    yes, now u see, how they can be separated into 2 different integrals, both going from 0 to infinity..

    • one year ago
  21. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    and both integrals are definition of LT

    • one year ago
  22. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    \[=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\] \[=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{u}^\infty e^{-pv}f(v)\cdot\text dv\quad?\]

    • one year ago
  23. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    =L(g(x))L(f(x)) is the most simplified form...

    • one year ago
  24. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    when u put v= t-u the limits change to 0 to infinity...

    • one year ago
  25. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    i dont understand that bit

    • one year ago
  26. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    v=t-u when t=u v= 0 when t=infty v=infty

    • one year ago
  27. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    everything else is correct.. just limits will be 0 to infinity

    • one year ago
  28. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    that is starting to make sense now

    • one year ago
  29. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    \(=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{0}^\infty e^{-pv}f(v)\cdot\text dv\quad =L[g(t)]L[f(t)]\)

    • one year ago
  30. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    ok ?

    • one year ago
  31. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    is this all right now? \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u\\ \text dv =\text dt\\ t=u\rightarrow v=0\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{0}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)e^{-up}\cdot\text du\times\int\limits_{0}^\infty f(v)e^{-pv}\cdot\text dv\\ \\&=G(p)F(p) \end{align*}\]

    • one year ago
  32. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    yes

    • one year ago
  33. gohangoku58 Group Title
    Best Response
    You've already chosen the best response.
    Medals 1

    finally!

    • one year ago
  34. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    Thank you so much!

    • one year ago
  35. UnkleRhaukus Group Title
    Best Response
    You've already chosen the best response.
    Medals 0

    what a convoluted process

    • one year ago
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.