UnkleRhaukus
  • UnkleRhaukus
Use transform definitions, and the evaluation of a suitable double integral, to calculate the Laplace transform of the following integral (ii)\[\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\\ \end{align*} \]
anonymous
  • anonymous
\(\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty e^{-pt}[\int \limits_0^tf(t-u)g(u)du]dt \\ &=\int\limits_0^\infty g(u)[\int \limits_u^\infty e^{-pt}f(t-u)dt]du \\ by \:changing \:the\:order\:of \:integration \end{align*}\) the region from u=0 to u=t is same as region from t=u to t=\(\infty\) now, substitute t-u = x in inner integral. then you will be able to split the integrals , one only containing t, and other only containing x....
anonymous
  • anonymous
@UnkleRhaukus are u trying that ^ ?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
yeah im working on it
anonymous
  • anonymous
:)
anonymous
  • anonymous
numbers ? which numbers ?
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_0^\infty f(t-u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)H(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ \end{align*}\]
anonymous
  • anonymous
didn't change the order of integration.....? plus you H is throwing me of...why(and how) its used there ... ?
UnkleRhaukus
  • UnkleRhaukus
im not sure wether or not the unsure the unit heaviside step function
anonymous
  • anonymous
if u follow (and understand) what i am suggesting, u don't need H
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\\ \end{align*}\]
anonymous
  • anonymous
still, didn't change the order of integration.......
anonymous
  • anonymous
u=0 to u=t cahnges to t=u to t=infinity
anonymous
  • anonymous
then put t-u=v
UnkleRhaukus
  • UnkleRhaukus
this question is confusing me
anonymous
  • anonymous
whats the confusion about ? changing order of integration ?
UnkleRhaukus
  • UnkleRhaukus
yes
anonymous
  • anonymous
|dw:1353245519310:dw|
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ \end{align*}\]
anonymous
  • anonymous
yes, now u see, how they can be separated into 2 different integrals, both going from 0 to infinity..
anonymous
  • anonymous
and both integrals are definition of LT
UnkleRhaukus
  • UnkleRhaukus
\[=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\] \[=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{u}^\infty e^{-pv}f(v)\cdot\text dv\quad?\]
anonymous
  • anonymous
=L(g(x))L(f(x)) is the most simplified form...
anonymous
  • anonymous
when u put v= t-u the limits change to 0 to infinity...
UnkleRhaukus
  • UnkleRhaukus
i dont understand that bit
anonymous
  • anonymous
v=t-u when t=u v= 0 when t=infty v=infty
anonymous
  • anonymous
everything else is correct.. just limits will be 0 to infinity
UnkleRhaukus
  • UnkleRhaukus
that is starting to make sense now
anonymous
  • anonymous
\(=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{0}^\infty e^{-pv}f(v)\cdot\text dv\quad =L[g(t)]L[f(t)]\)
anonymous
  • anonymous
ok ?
UnkleRhaukus
  • UnkleRhaukus
is this all right now? \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u\\ \text dv =\text dt\\ t=u\rightarrow v=0\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{0}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)e^{-up}\cdot\text du\times\int\limits_{0}^\infty f(v)e^{-pv}\cdot\text dv\\ \\&=G(p)F(p) \end{align*}\]
anonymous
  • anonymous
yes
anonymous
  • anonymous
finally!
UnkleRhaukus
  • UnkleRhaukus
Thank you so much!
UnkleRhaukus
  • UnkleRhaukus
what a convoluted process

Looking for something else?

Not the answer you are looking for? Search for more explanations.