Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

Use transform definitions, and the evaluation of a suitable double integral, to calculate the Laplace transform of the following integral (ii)\[\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}\]

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\\ \end{align*} \]

  2. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \(\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty e^{-pt}[\int \limits_0^tf(t-u)g(u)du]dt \\ &=\int\limits_0^\infty g(u)[\int \limits_u^\infty e^{-pt}f(t-u)dt]du \\ by \:changing \:the\:order\:of \:integration \end{align*}\) the region from u=0 to u=t is same as region from t=u to t=\(\infty\) now, substitute t-u = x in inner integral. then you will be able to split the integrals , one only containing t, and other only containing x....

  3. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    @UnkleRhaukus are u trying that ^ ?

  4. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    yeah im working on it

  5. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    :)

  6. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    numbers ? which numbers ?

  7. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\}&=\int\limits_0^\infty\int\limits_0^tf(t-u)g(u)\cdot\text du\cdot e^{-pt}\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty\int\limits_0^\infty f(t-u)g(u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_0^\infty f(t-u)H(t-u)e^{-pt}\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)H(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)\int\limits_{-u}^\infty f(v)e^{-p(v+u)}\cdot\text dv\cdot\text du\\ \end{align*}\]

  8. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    didn't change the order of integration.....? plus you H is throwing me of...why(and how) its used there ... ?

  9. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    im not sure wether or not the unsure the unit heaviside step function

  10. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    if u follow (and understand) what i am suggesting, u don't need H

  11. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\\ \end{align*}\]

  12. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    still, didn't change the order of integration.......

  13. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    u=0 to u=t cahnges to t=u to t=infinity

  14. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    then put t-u=v

  15. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    this question is confusing me

  16. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    whats the confusion about ? changing order of integration ?

  17. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    yes

  18. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    |dw:1353245519310:dw|

  19. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u&\\ \text dv =\text dt\\ t=0\rightarrow v=-u\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ \end{align*}\]

  20. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    yes, now u see, how they can be separated into 2 different integrals, both going from 0 to infinity..

  21. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    and both integrals are definition of LT

  22. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[=\int\limits_0^\infty g(u)\int\limits_{u}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\] \[=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{u}^\infty e^{-pv}f(v)\cdot\text dv\quad?\]

  23. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    =L(g(x))L(f(x)) is the most simplified form...

  24. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    when u put v= t-u the limits change to 0 to infinity...

  25. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    i dont understand that bit

  26. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    v=t-u when t=u v= 0 when t=infty v=infty

  27. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    everything else is correct.. just limits will be 0 to infinity

  28. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    that is starting to make sense now

  29. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \(=\int\limits_0^\infty g(u)e^{-pu}\cdot\text du\quad\times\quad \int\limits_{0}^\infty e^{-pv}f(v)\cdot\text dv\quad =L[g(t)]L[f(t)]\)

  30. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ok ?

  31. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    is this all right now? \[\begin{align*}\mathcal L\left\{\int\limits_0^tf(t-u)g(u)\cdot\text du\right\} &=\int\limits_0^\infty\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot e^{-pt}\cdot\text dt\\ &=\int\limits_0^\infty e^{-pt}\int\limits_0^t f(t-u)g(u)\cdot\text du\cdot\text dt\\ u=0\rightarrow t=u\\ u=t \rightarrow t=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_u^\infty e^{-pt}f(t-u)\cdot\text dt\cdot\text du\\ \text{let }v=t-u\\ \text dv =\text dt\\ t=u\rightarrow v=0\\ t=\infty \rightarrow v=\infty\\ &=\int\limits_0^\infty g(u)\int\limits_{0}^\infty e^{-p(v+u)}f(v)\cdot\text dv\cdot\text du\\ &=\int\limits_0^\infty g(u)e^{-up}\cdot\text du\times\int\limits_{0}^\infty f(v)e^{-pv}\cdot\text dv\\ \\&=G(p)F(p) \end{align*}\]

  32. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    yes

  33. gohangoku58
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    finally!

  34. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Thank you so much!

  35. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    what a convoluted process

  36. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.