anonymous
  • anonymous
a plate occupies an elliptic region G: x^2/4 + y^2/9 less than or equal to 1. the surface density of electric charge is G(x,y)=sin^5(xy^2). Find the total electric charge Q.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1353266741808:dw|
anonymous
  • anonymous
x^2/4 + y^2/4<=1 That's a circle, not an ellipse
anonymous
  • anonymous
o oops it's supposed to be y^2/9

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
are you trying to work ou the area of the plate?
anonymous
  • anonymous
so how do i apply G(x,y)=sin^5(xy^2) ?
anonymous
  • anonymous
Apologies, I misread the boundary function as the density function. \[\large \int\limits_{x=-2}^{x=2}\int\limits_{y=0}^{y=\sqrt{9(1-\frac{x^2}{4})}}\sin^5(xy^2)dydx+\int\limits_{x=-2}^{x=2}\int\limits_{y=-\sqrt{9(1-\frac{x^2}{4}}}^{y=0}\sin^5(xy^2)dxdy\] I'm less sure about this one
anonymous
  • anonymous
Swap the last dxdy for dydx
anonymous
  • anonymous
I think that's OK, what do you think about the x-bounds?
anonymous
  • anonymous
i think this is correct. thank you!

Looking for something else?

Not the answer you are looking for? Search for more explanations.