anonymous
  • anonymous
The sum of the perimeters of an equilateral triangle and a square is 10. Find the dimensions of the triangle and square that produce a minimum area. I would like to solve it by incorporating A=(sqrt(3)x^2)/4 (area of an equilateral triangle)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
put the side of the triangle as \(x\) and the side of the square is \(y\) then \[3x+4y=10\] solve for \(y\) get \[y=\frac{10-3x}{4}\]
anonymous
  • anonymous
total area is therefore what you said triangle area is \(A(x)=\frac{\sqrt{3}x^2}{4}+(\frac{10-3x}{4})^2\)
anonymous
  • anonymous
After taking the derivative of that, I get \[A'=\frac{ 4\sqrt{3}x+9x-30 }{ 8 }\] Am I on the right path?

Looking for something else?

Not the answer you are looking for? Search for more explanations.