anonymous
  • anonymous
The sum of the perimeters of an equilateral triangle and a square is 10. Find the dimensions of the triangle and square that produce a minimum area. I would like to solve it by incorporating A=(sqrt(3)x^2)/4 (area of an equilateral triangle)
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
put the side of the triangle as \(x\) and the side of the square is \(y\) then \[3x+4y=10\] solve for \(y\) get \[y=\frac{10-3x}{4}\]
anonymous
  • anonymous
total area is therefore what you said triangle area is \(A(x)=\frac{\sqrt{3}x^2}{4}+(\frac{10-3x}{4})^2\)
anonymous
  • anonymous
After taking the derivative of that, I get \[A'=\frac{ 4\sqrt{3}x+9x-30 }{ 8 }\] Am I on the right path?

Looking for something else?

Not the answer you are looking for? Search for more explanations.