UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\big\{f(x-a)h(x-a)\big\}\]
Mathematics
chestercat
  • chestercat
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} \mathcal L\big\{f(x-a)h(x-a)\big\}&=\int\limits_0^\infty f(x-a)h(x-a)e^{-px}\text dx\\ \text{let } t=x-a\\ \text dt=\text dx\\ x=0\rightarrow t=-a\\ x=\infty\rightarrow t=\infty\\ &=\int\limits_{-a}^\infty f(t)h(t)e^{-p(t+a)}\text dt\\ &= \\ \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} &=\int\limits_{-a}^\infty f(t)h(t)e^{-p(t+a)}\text dt\\ &=e^{-pa}\int\limits_{0}^\infty f(t)e^{-pt}\text dt\\ &=e^{-pa}F(p)\ \\ \end{align*}\] is this right?
UnkleRhaukus
  • UnkleRhaukus
i dont get it

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Thats the same thing I show in my book. I just learned this last week. I don't get it either
anonymous
  • anonymous
The h(x-a) or in my book u(t-a) as I understand it is just an on off switch for the discontinuous function
UnkleRhaukus
  • UnkleRhaukus
yeah , h, u , or \(\theta\) are used for the heaviside unit step function
UnkleRhaukus
  • UnkleRhaukus
\[\mathcal L\big\{f(x-a)h(x-a)\big\}=e^{-pa}F(p)\] \[f(x-a)h(x-a)=\mathcal L^{-1}\big\{e^{-pa}F(p)\big\}\]
UnkleRhaukus
  • UnkleRhaukus
@gohangoku58

Looking for something else?

Not the answer you are looking for? Search for more explanations.