UnkleRhaukus
  • UnkleRhaukus
find the function whose transforms is given below. \[\frac{e^{-ap}}{p^2},\qquad a>0\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
\[ \begin{align*} f(t)&=\mathcal L ^{-1}\left\{\frac{e^{-ap}}{p^2}\right\},\quad a>0\\ &=\mathcal L ^{-1}\left\{e^{-ap}\times\frac1{p^2}\right\}\\ &= \end{align*}\]
AccessDenied
  • AccessDenied
Are you familiar with this theorem about convolution? \( \displaystyle \mathcal{L}^{-1} \left\{ F(s) G(s) \right\}(t) = \mathcal{L}^{-1} \{F(s)\}(t) * \mathcal{L}^{-1} \{G(s)\}(t) \) \( \displaystyle = (f * g)(t) \) \( \displaystyle = \int_{0}^{t} f(t - \tau) g(\tau) \; \textrm{d} \tau \) I found this in my PDF. If we can find the inverse Laplace transform of our two factors individually, then their convolution should give the inverse Laplace transform of their product.
UnkleRhaukus
  • UnkleRhaukus
i was trying to apply that but i got stuck

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

AccessDenied
  • AccessDenied
Hmm.. where did you get stuck?
UnkleRhaukus
  • UnkleRhaukus
Second Shift Theorem
AccessDenied
  • AccessDenied
Hmm... \( \mathcal{L} \{H(t-a) f(t-a) \}(s) = e^{-as} F(s) \) \( H(t-a) f(t-a) = \mathcal{L}^{-1} \{e^{-as} F(s) \} \) \(\displaystyle F(s) = \frac{1}{s^2} \) in this case. Looking at this, I think we simply need the inverse laplace transform of 1/s^2 to find f(t), and then sub t=t-a. I think that's possible w/o convolution... :)
AccessDenied
  • AccessDenied
From a table, I find the inverse laplace transform of 1/s^2 is f(t) = t. f(t-a) = (t-a) So the final answer would be... \( \displaystyle \mathcal{L}^{-1} \{\frac{e^{-as}}{s^2}\}(t) = (t-a) H(t-a) \)
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} f(t)&=\mathcal L ^{-1}\left\{\frac{e^{-ap}}{p^2}\right\},\quad a>0\\ &=\mathcal L ^{-1}\left\{\frac{e^{-ap}}p\times\frac1{p}\right\}\\ &=\mathcal L ^{-1}\left\{\frac{e^{-ap}}p\right\}\times\mathcal L^{-1} \left\{\frac1{p}\right\}_{t\rightarrow t-a}\\ &=h(t-a)\times t\Big|_{t\rightarrow t-a}\\ &=h(t-a)\ (t-a)\\ \end{align*}\]??
UnkleRhaukus
  • UnkleRhaukus
im getting muddled up
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} f(t)&=\mathcal L ^{-1}\left\{\frac{e^{-ap}}{p^2}\right\},\quad a>0\\ &=\mathcal L ^{-1}\left\{{e^{-ap}}\times\frac1{p^2}\right\}\\ &=h(t-a)\times\mathcal L^{-1} \left\{\frac1{p^2}\right\}_{t\rightarrow t-a}\\ &=h(t-a)\times t\Big|_{t\rightarrow t-a}\\ &=h(t-a)(t-a) \end{align*}\] ?
AccessDenied
  • AccessDenied
Yes, that is what I got as well. :)
UnkleRhaukus
  • UnkleRhaukus
ok i still dont understand this very well
AccessDenied
  • AccessDenied
I apologize for not being very much help with the intuition part here. I am not very familiar with it myself. ;(
AccessDenied
  • AccessDenied
My current understanding is that this theorem establishes that a factor of e^(-ap) on the laplace transform of a function translates to a shift of 'a' units to the right in the original function; or in reverse, that a shift of 'a'units translates to a factor of e^(-ap) in the transform.

Looking for something else?

Not the answer you are looking for? Search for more explanations.