thomas5267
  • thomas5267
If \(3x^2+4\) is an antiderivative of \(f(x)\), evaluate the indefinite integral \[F(x)=\int f(x)\,dx\] A: \(F(x)=x^3+4x+C\) B: \(F(x) = 3x^2+C\) C: \(F(x) = 3(x + C)^2+4\) D: \(F(x) = C(3x^2+4)\) E: none of the above Isn't the answer \(3x^2+4\)? That just seems wrong!
Calculus1
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

Callisto
  • Callisto
\[\int x^{n}dx = \frac{1}{n+1}x^{n+1}+C\]
thomas5267
  • thomas5267
OK, but the question is asking for the antiderivative of \(f(x)\), isn't that equals to \(\int f(x) \, dx\)? And the question says that it is \(3x^2+4\). WHAT!? The question has given you the answer!?
Callisto
  • Callisto
lol I see your point!!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Is it a quiz? homework question?
thomas5267
  • thomas5267
This is a assignment. If I am correct, \(F(x)=3x^2+4\). So does it equals to \(3x^2+C\)? But it is absolutely weird to use \(C\) in this context. The homework says that "Assume that C is an arbitrary constant throughout this assignment."
Callisto
  • Callisto
If \(3x^2+4\) is an antiderivative of f(x), so is \(3x^2+5\), \(3x^2+100\), etc. So, generally, \(3x^2+C\) is the antiderivative of f(x).
Callisto
  • Callisto
Yay! @mukushla comes to save us :P
thomas5267
  • thomas5267
OK. I get the point. \(3x^2+4\) is AN antiderivative of \(f(x)\), i.e. \(3x^2+4\) is one of the antiderivative of \(f(x)\). Therefore, the answer is B! *facepalm* Is this a question on Maths or English?
Callisto
  • Callisto
English :S and Maths :S
Callisto
  • Callisto
I'm sorry, I'm too careless!!
thomas5267
  • thomas5267
WTF? Playing with words in Maths assignment? YOU WIN! *ragequit*
Callisto
  • Callisto
Language :S

Looking for something else?

Not the answer you are looking for? Search for more explanations.