Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Find center of mass

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

Of the upper half (\[y \ge 0\] of the disk bounded by the circle x^2+y^2=4 with p(x,y)=1+y/2
i got the mass of 8/3 +2pi is that right?
\[\int_{0}^{2} 1+\frac12y~dy\] 2 + 2/4 is what i see along the y axis

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the center of mass is a point at which the total mass can be depicted
or in this case, maybe a line for the y cg and another for the xcg; where they cross would be the center of mass
what i was taught is first to calculate the mass and then calculate integrals for moments with respect to the y-axis and x-axis and then divide My/M (my moment by mass ) to get x
hmmm, that does ring a bell
http://tutorial.math.lamar.edu/Classes/CalcII/CenterOfMass.aspx yeah, i might need to read this for a refresher :)
this is your density function? p(x,y)=1+y/2
i get the concept but i have trouble setting up the integral
i found the mass \int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}1+\frac{ y }{ 2 }dydx = \frac{ 8 }{ 3 }+2\pi
\[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}1+\frac{ y }{2 } dydx =\frac{ 8 }{ 3 }+2\pi\]
wrap that with a: ``` \[ \] ``` yeah, there ya go
would the integral for my be the same just with extra y? like Mx\[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}y(1+\frac{ y }{ 2 })dydx\]
would that be Mx?
http://people.usd.edu/~jflores/MultiCalc02/WebBook/Chapter_16/Graphics16/MI_5/Html16_5/16.5%20Applications%20of%20Double%20Integrals.htm that does look appriopriate to me
then i would get 0, ooo it should be zero since circle is centered at 0
\[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}y(1+\frac{ y }{ 2 })dydx\] \[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}y+\frac12 y^2~dy~dx\] \[\int\limits_{-2}^{2}\frac12(\sqrt{4-x^2})^2+\frac16 (\sqrt{4-x^2})^3~dx\] \[k\int\limits_{-2}^{2}~dx\] \[k(2-(-2))=4k\] right?
lol .... i totally looked over the x parts in the second go around :/
whats k?
i thought id clean it up by using a constant k, because i overran the xs and simply forgot to integrate them \[\frac12\int\limits_{-2}^{2}(\sqrt{4-x^2})^2~dx+\frac16\int\limits_{-2}^{2} (\sqrt{4-x^2})^3~dx\] \[\frac12\int\limits_{-2}^{2}4-x^2~dx+\frac16\int\limits_{-2}^{2} (4-x^2)\sqrt{4-x^2}~dx\] \[8-\frac{8}3+6\pi\]
http://www.wolframalpha.com/input/?i=integrate+y%281%2By%2F2%29+from+y%3D0..sqrt%284-x%5E2%29 http://www.wolframalpha.com/input/?i=integrate+%28integrate+y%281%2By%2F2%29+from+y%3D0..sqrt%284-x%5E2%29%29+from+x%3D-2+to+2 i seem to have mismathed it someplace .. ah well. i have to get going so ill try to take another look at this tomorrow; good luck
thanks i think i got it, just the integration is painful
I get \[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}y\left(1+\frac{ y }{ 2 }\right)dydx=\pi+\frac{16}{3}\]
it is easy to integrate if you switch to polar coordinates
oo I didn't think of that, and yea it seems right
thanks a lot
\[\int\limits_{-2}^{2}\int\limits_{0}^{\sqrt{4-x^2}}y\left(1+\frac{ y }{ 2 }\right)dydx=\pi+\frac{16}{3}\] \[\int\limits_{0}^{\pi}\int\limits_{0}^{2}r\sin(\theta)\left(1+\frac{ r\sin(\theta) }{ 2 }\right)rdrd\theta=\pi+\frac{16}{3}\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question