Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

center of mass of the upper half of the ball x^2+y^2+z^2<16 (for z>0)

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

Assume it has a density rho. Then: \[M= \iiint \rho dV\] It's easiest in spherical so: \[M=\rho \int\limits_0^{2 \pi} \int\limits_0^{\frac{\pi}{2}} \int\limits_0^4 r^2 \sin(\theta) d r d \theta d \phi\] If rho is constant however then you should expect (V is volume of total sphere): \[M= \rho \frac{V}{2}=\frac{2\rho \pi (4)^3 }{3}=\frac{128 \rho \pi}{3}\] So we get: \[M= \rho \int\limits_0^{2 \pi} d \phi \int\limits_0^{4}r^2 dr \int\limits_0^{\frac{\pi}{2}}\sin(\theta) d \theta=\rho (2 \pi)(\frac{4^3}{3})(1)=\frac{128 \rho \pi}{3}\] Which we were expecting
So now you need the centroid in each direction. You can see from symmetry that the x and y ones will be zero and you only need find where the z one is. So we need: \[\bar{z}=\frac{\iiint z \rho dV}{M}\] So rho is still constant, pull it out and then you have the integral of z (r cos(theta) in spherical). Integrate that and divide by the mass we found and you're done.
thanks so much man

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

i had trouble setting up the integration part
No problem. Thats the hardest part of the process :P
how did you get pi/2 for the limit
malevolence19 and how would you integrate z bar since it is z in and there are no integration of z so it would not go away?
You need to replace z by rcos(theta) which is the coordinate transformation from cartesian to spherical. And I got a pi/2 because the theta angle sweeps from the positive z axis down towards the x-y, then towards the -z axis; you want it to STOP at the x-y plane, this corresponds to theta=pi/2.
The theta should read "theta=pi/2" not a range.
thanks that explains it well

Not the answer you are looking for?

Search for more explanations.

Ask your own question