Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

A particle starts at the origin and initial verlocity is i - j + 3k. Its acceleration is a(t) = 6t i + 12t^2 j + 6t k. Find its position function. I need help confirming my answer. Is the correct way to do this to integrate a(t) to get velocity and then integrate velocity to get position?

Calculus1
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
yeah. You are also given it's initial velocity
When finding velocity I need to use the initial velocity as the C right?
Yes, the constant of integration after the first integration is your initial velocity

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

My final answer is (t^3 + t)i + (t^4 -t)j + (2/3 t^3 + 3t)k + c (c = 0 because we started at the origin)
hang on...i'll check and see what I get
I get s(t)=(t^3+t)i+(t^4-t)j+(t^3-3t)k
Ah. I see what I did wrong. Thank you for your help! I looked at the wrong numbers for k when I was dong position integral. It works for me now.
cool, no prob

Not the answer you are looking for?

Search for more explanations.

Ask your own question