Helpp

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

sin(3x) = sin(2x + x) sin(3x) = sin(2x)cos(x) + cos(2x)sin(x) sin(3x) = sin(x+x)cos(x) + cos(x+x)sin(x) sin(3x) = [sin(x)cos(x) + cos(x)sin(x)]cos(x) + [cos(x)cos(x) - sin(x)sin(x)]sin(x) sin(3x) = [2cos(x)sin(x)]cos(x) + [cos^2(x) - sin^2(x)]sin(x) sin(3x) = 2cos^2(x)sin(x) + cos^2(x)sin(x) - sin^3(x) Do the same to find cos(3x)
I'm using the identities sin(x+y) = sin(x)cos(y) + cos(x)sin(y) cos(x+y) = cos(x)cos(y) - sin(x)sin(y)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

sry i should have gone further sin(3x) = 3cos^2(x)sin(x) - sin^3(x)
im confused can you tell me what the answer is so i can check if i got it right?
hold on one sec
checking the answer, but the second one doesn't seem right, but one sec
ok thank you
well using a graphing calculator, I was able to eliminate choices A through C so that leaves D

Not the answer you are looking for?

Search for more explanations.

Ask your own question