anonymous
  • anonymous
\[y' = x^3 (1-y)\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
this is easily separable...
anonymous
  • anonymous
\[y' = x^3(1-y)\]\[\frac{dy}{1-y} = x^3 dx\]\[-\ln |1-y| = \frac{1}{4}x^4+C\]So far so good?
anonymous
  • anonymous
lol I know, the whole chapter I'm doing now is separable.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ugh... check ur right hand side
anonymous
  • anonymous
Right hand side? \[x^3 dx\]?
hartnn
  • hartnn
i think its fine here u can isolate y easily.
anonymous
  • anonymous
If it's fine, then I continue.. y(0) = 3 \[-\ln |1-3| = \frac{1}{4}(0)^4+C\]\[-\ln |2| = C\] So far so good?
anonymous
  • anonymous
Hmm.. -ln2
anonymous
  • anonymous
ok x^2 does not integrate to 1/4*x^4
anonymous
  • anonymous
but C would still be -ln2
anonymous
  • anonymous
It's x^3!
hartnn
  • hartnn
continue....
anonymous
  • anonymous
So, \[-\ln |1-y| = \frac{1}{4}(x)^4-\ln 2\]\[\ln2-\ln |1-y| = \frac{1}{4}(x)^4\]\[\ln\frac{2}{1-y} = \frac{1}{4}(x)^4\]\[\frac{2}{1-y} = e^{\frac{x^4}{4}}\]\[2= ({1-y} )e^{\frac{x^4}{4}}\]\[y = \frac{e^{\frac{x^4}{4}}-2}{\frace^{\frac{x^4}{4}}}{
anonymous
  • anonymous
Sorry, please ignore the last line. OS just freezed my page.
anonymous
  • anonymous
But that doesn't look good at al..
hartnn
  • hartnn
better to do this \( -\ln2+\ln |1-y| = -\frac{1}{4}(x)^4\)
anonymous
  • anonymous
\[-\ln2+\ln |1-y| = -\frac{1}{4}x^4\]\[\frac{1-y}{2}=e^{\frac{x^4}{4}}\]\[1-y=2e^{\frac{x^4}{4}}\]\[y=1-2e^{\frac{x^4}{4}}\]
hartnn
  • hartnn
e^{-...}
anonymous
  • anonymous
Oh!! \[e^{-\frac{x^4}{4}}\]
hartnn
  • hartnn
everything else is correct
anonymous
  • anonymous
Got it :)
anonymous
  • anonymous
Thanks!!
anonymous
  • anonymous
\[\ln \left| 1-y \right| = -\frac{ 1 }{ 3 }x ^{3} + \ln2\] \[\left| 1-y \right| = 2e^{-\frac{ x ^{3} }{ 3 }}\] then you have to solve the absolute value part which gives u a piecewise function (this is a pain in the retrice
anonymous
  • anonymous
lol i like how they censor inappropriate words

Looking for something else?

Not the answer you are looking for? Search for more explanations.