anonymous
  • anonymous
Resolve into partial fraction \[\frac{x^2}{1-x^2}\]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
\[\frac{x^2}{1-x^2} = \frac{x^2}{(1-x)(1+x)}\]How to continue??
anonymous
  • anonymous
\[x ^{2}/(1-x)(1+x)=A/(1-x)+B(1+x)\]
anonymous
  • anonymous
its B/(1+x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ya?
anonymous
  • anonymous
But that doesn't seems to work.. Here's what I mean: A(1+x) + B(1-x) = x^2 (A-B)x +(A+B) = x^2 => A-B =0 , A+B =0 Not reasonable.
hartnn
  • hartnn
The degree of numerator must strictly be less than degree of denominator.
hartnn
  • hartnn
so, one thing u can do is, resolve 1/(1-x^2) into partial fractions and then multiply x^2 to both terms.
hartnn
  • hartnn
\(\large \frac{-(-x^2)}{(1-x^2) } = \frac{-(1-x^2)-1}{1-x^2} = -1-\frac{1}{1-x^2}\)
hartnn
  • hartnn
or u can do that ^
UnkleRhaukus
  • UnkleRhaukus
A(1+x) + B(1-x) = x^2 for x= -1 2 B = x^2 B = x^2/2 for x= 0 A + B = x^2 for x= 1 2A = x^2 A = x^2/2
anonymous
  • anonymous
Hmmm... -1 -1 = -2?! Shouldn't it be \[\frac{-(-x^2)}{(1-x^2) } = \frac{-(1-x^2)+1}{1-x^2} = -1+\frac{1}{1-x^2}\]
hartnn
  • hartnn
yes, sorry.
hartnn
  • hartnn
but u got the point ?
anonymous
  • anonymous
@UnkleRhaukus A(1+x) + B(1-x) = x^2 for x= -1 2 B = (-1)^2 B = 1/2 for x= 0 A + B = 0 for x= 1 2A = 1^2 A = 1/2 And it doesn't work here :S
anonymous
  • anonymous
@hartnn Yes! When can I be as smart as you???!!!!!
hartnn
  • hartnn
with just a little bit of practice :P
UnkleRhaukus
  • UnkleRhaukus
\[\frac{x^2}{1-x^2}=x^2\times\frac{1}{1-x^2} = x^2\times\frac{1}{(1-x)(1+x)}\] \[\frac{1}{(1-x)(1+x)}=\frac A{(1−x)}+\frac B{(1+x)}=\frac{A(1+x)+B(1-x)}{(1-x)(1+x)}\] \[1=A(1+x)+B(1-x)\] for \(x=1\) \(1=2A\) \(A=1/2\) for \(x=-1\) \(1=-2B\) \(B=-1/2\) \[\frac{1}{(1-x)(1+x)}=\frac{1/2}{(1−x)}-\frac {1/2}{(1+x)}\] \[\frac{x^2}{(1-x)(1+x)}=\frac{x^2}{2(1−x)}-\frac {x^2}{2(1+x)}\]
anonymous
  • anonymous
Excuse.. me.... When x =-1 1 = A(1+(-1)) + B(1-(-1)) 1 = 0 + 2B B = 1/2?
UnkleRhaukus
  • UnkleRhaukus
your right
anonymous
  • anonymous
http://www.wolframalpha.com/input/?i=Resolve+into+partial+fraction%3A+x%5E2+%2F+%281-x%5E2%29 I don't know how to get that -1/(2(1-x))
UnkleRhaukus
  • UnkleRhaukus
(x-1)=-(1-x)
anonymous
  • anonymous
Such simple maths is killing me :\ Thanks!!!!!!!!!
UnkleRhaukus
  • UnkleRhaukus
im not sure about the -1
anonymous
  • anonymous
Here it goes~ \[\frac{x^2}{1-x^2}\]\[=\frac{-(-x^2)}{1-x^2}\]\[=\frac{-(1-x^2)+1}{1-x^2}\]\[=-1+\frac{1}{1-x^2}\] \[\frac{1}{1-x^2}=\frac{A}{1+x}+\frac{B}{1-x}\]A(1-x)+B(1+x)=1 A = B = 1/2 So, \[\frac{1}{1-x^2}=\frac{1}{2(1+x)}+\frac{1}{2(1-x)}\] Thus, \[\frac{x^2}{1-x^2}=-1+\frac{1}{2(1+x)}+\frac{1}{2(1-x)}\]
UnkleRhaukus
  • UnkleRhaukus
A = B = 1/2 great work @RolyPoly
hartnn
  • hartnn
1-x= -(x-1) again
hartnn
  • hartnn
what u have done is correct.
anonymous
  • anonymous
:'( Last but not least... \[\frac{x^2}{1-x^2}=-1+\frac{1}{2(1+x)}-\frac{1}{2(x-1)}\]
anonymous
  • anonymous
It needs tons of thousands of millions of practice!! :'( Thanks again!!!
hartnn
  • hartnn
welcome ^_^

Looking for something else?

Not the answer you are looking for? Search for more explanations.